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trum of magnetite provided by dr Jan Żukrowski and prof. dr hab. Ing. Andrzej
Koz lowski from AGH University of Kraków, Poland. Finally, I wish to thank
my partner Alice for her support and my sister Alena for language corrections of
selected chapters.



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date 15th July 2015 signature
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tracted from the results of ab initio calculations based on the recently reported
crystal structure. Published experimental dependences of the 57Fe nuclear mag-
netic resonance frequencies on the external magnetic field direction were quan-
titatively reanalyzed, yielding hyperfine anisotropy data, which were compared
to the analogous hyperfine field parameters from the ab initio calculations. The
findings were interpreted in the context of up-to-date charge ordering models for
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Chapter 1

Introduction

Magnetite (Fe3O4) is an interesting compound due to its unusual physical proper-
ties as well as a wide range of technical applications of magnetite-derived ferrites.
The characteristic behaviour of magnetite is still not entirely understood despite
a long-lasting research, but at the same time, its properties make magnetite a
promising candidate for emerging fields of applications ranging from spintronics
to hyperthermia therapy. The most typical feature of magnetite is the Verwey
phase transition accompanied by significant change of electrical conductivity and
other physical quantities. The main open questions are thus related to the mech-
anism of the Verwey transition as well as to the charge ordering and electronic
structure in general, both below and above the transition.

A recent major advance in magnetite research is presented by the determi-
nation of the precise crystallographic structure below the Verwey transition ac-
companied by a suggested model of trimerons [1]. The present thesis takes ad-
vantage of this progress while experimental data obtained by nuclear magnetic
resonance (NMR) are analyzed in conjunction with results of ab initio calcula-
tions using the precise crystal structure. The 57Fe NMR spectra reflect hyperfine
field distribution in a sample since resonating nuclei serve as local hyperfine field
probes. If limitations of ab initio calculations of electronic structure are properly
treated, they make accessible physical quantities and qualities which might be
hardly extracted directly from experiments. Suitable combination of these two
well-established complementary data sources thus provides reliable deeper in-
sight into the hyperfine interactions and the underlying electronic structure of
magnetite below the Verwey transition.

Local sensitivity of NMR qualifies this method also for a study of the impact
of substitution defects on the electronic structure of magnetite. This comprises
investigations of signal intensity shifts in spectra of the low-temperature phase
of magnetite as well as temperature evolution of satellite signal frequencies and
anomalous temperature dependence of main line widths above the Verwey tran-
sition. Observations of these effects were already reported, but no substantial
analyses were available.

The thesis is structured into 9 chapters. The current knowledge about mag-
netite is summarized in Chapter 2. The objectives of this work are specified in
Chapter 3 together with the strategies for their achievement. Chapter 4 covers
the theory of the hyperfine interactions as well as the principles of the hyperfine
(NMR and Mössbauer) spectroscopies. The density functional theory is explained
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in Chapter 5. The employed methods are described in Chapter 6. The results
of the work and their discussion related to the low- and high-temperature phase
of magnetite are contained in Chapters 7 and 8, respectively. Chapter 9 re-
capitulates all the findings. Supplementary figures and tables are provided in
Appendices A and B, respectively.
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Chapter 2

Properties of Magnetite – the
State of the Art

Magnetite is a prototype mixed valence iron oxide with strongly correlated charge
carriers, which has been fascinating researchers for decades. Large amount of
relevant data has been collected during that time and many theoretical models
have been conceived. However, despite such a thorough study, the knowledge
about the physics of magnetite is still far from complete. This chapter summarizes
the most important properties of magnetite together with up-to-date models and
interpretations of underlying structure and processes.

2.1 Crystal and Magnetic Structure

Chemical formula of magnetite can be written as [Fe]A[Fe2]BO4, where two dif-
ferent types of iron sites are explicitly denoted – the iron ions at the A sites are
inside tetrahedra formed by the nearest oxygen ions, while the B site iron ions
are surrounded by oxygen ions forming octahedra. The most known phenomenon
connected with magnetite is the Verwey transition occurring at temperature
TV ≈ 120 K. A broader overview is provided in several reviews, e. g. Refs. [2],
[3], [4] and [5].

T > T
sr

[100]

[010]

[001] [111]

0

→

M

T
sr

 > T > T
V

[100]

[010]

[001] [111]

0

→

M

T < T
V

0a

b

c

→

M

Figure 2.1: Elementary cell of magnetite above (cubic; in red) and below (mon-
oclinic; in blue) the Verwey transition. The black arrows indicate the easy mag-
netization direction. The illustration exagerates the tilt of the monoclinic axis as
well as of the magnetization direction below the Verwey transition.
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Magnetic moments of Fe(A) ions are anti-parallel to the moments of Fe(B) ions
[6], resulting total magnetic moment is in a direction of Fe(B) moments. Thus
magnetite presents a ferrimagnetic material with Curie temperature TC ≈ 860 K.
Magnetic ordering of magnetite is caused by double exchange and superexchange
interactions [7]. Fig. 2.2 shows temperature dependence of magnetization of both
A and B sublattices obtained from experiment [8] and from calculations [7] based
on Kubo-Ohata mean field theory [9].

Figure 2.2: Reduced magnetizations of the A and B sublattices in magnetite –
experimental and calculated data after Ref. [7]

2.1.1 Structure Above the Verwey Transition

The cubic inverse spinel structure of magnetite above the Verwey transition be-
longs to a space group Fd3m (O7

h). Lattice parameter is ac = 8.3939 (2) Å (at
130 K) [10]. There are 32 O2− ions in an elementary cell forming a face centred
cubic lattice with 64 tetrahedral and 32 octahedral interstitial sites between the
oxygen ions. Eight Fe3+ ions are located at the tetrahedral A sites and sixteen
mixed valence Fe2.5+ ions occupy the octahedral B sites. The elementary cell
consists of eight octants with two different iron ion arrangements as illustrated
in Fig. 2.3 – details can be found in Refs. [11], [6]. Local symmetry and other
crystallographic parameters of occupied sites are listed in Table 2.1 [12] while
Table 2.2 summarizes the nearest neighbour distances.
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a

oxygen ions

iron ions at A sites

iron ions at B sites

Figure 2.3: Arrangement of ions in an elementary cell of magnetite above the
Verwey transition

Table 2.1: Occupied crystallographic sites in cubic magnetite structure (origin at
tetrahedral site) [12]; µ = 3/8+0.0049 (5)[10]. Additional positions are generated
by (0, 1/2, 1/2), (1/2, 0, 1/2) and (1/2, 1/2, 0) translations.

Occupied

positions
Multiplicity

Wyckoff

symbol
Symmetry Fractional coordinates

Fe3+ ion

A sites
8 a 43m 0, 0, 0 1/4, 1/4, 1/4

Fe2.5+ ion 

B sites
16 d 3m

5/8, 5/8, 5/8 7/8, 5/8, 7/8

5/8, 7/8, 7/8 7/8, 7/8, 5/8

O2- ion sites 32 e 3m

μ, ‒μ, ‒μ

‒μ, μ, ‒μ

‒μ, ‒μ, μ

μ, μ, μ

1/4 ‒ μ, 1/4 ‒ μ, 1/4 ‒ μ

1/4 ‒ μ, 1/4 + μ, 1/4 + μ

1/4 + μ, 1/4 ‒ μ, 1/4 + μ

1/4 + μ, 1/4 + μ, 1/4 ‒ μ 
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Table 2.2: Nearest neighbour distances in the cubic phase of magnetite – based
on Refs. [1] and [10].

sites distance (nm)
Fe(A) - Fe(A) 0.36347(1)
Fe(A) - Fe(B) 0.34799(1)
Fe(B) - Fe(B) 0.29677(1)

Fe(A) - O 0.18885(2)
Fe(B) - O 0.20582(1)

If the temperature is between the Verwey transition and the spin reorientation
transition, which occurs at Tsr ≈ 125− 130 K, the easy magnetization direction
corresponds to [001] direction in the cubic lattice. All Fe(A) ions are then mag-
netically equivalent and the same applies for the Fe(B) ions.

Above the spin reorientation transition, the easy magnetization direction be-
comes the cube diagonal [111]. While the Fe(A) sites all remain magnetically
equivalent, the Fe(B) sites split into 2 groups of magnetically equivalent sites in
a ratio of 1:3.

2.1.2 Structure Below the Verwey Transition

When the temperature drops below the Verwey transition temperature, the sym-
metry of magnetite structure is lowered from cubic to monoclinic Cc symmetry.
Lattice parameters of the Cc cell at 10 K are a = 11.88881 (3) Å, b = 11.84940 (3) Å,
c = 16.77515 (14) Å and the monoclinic angle has a value of β = 90.2363 (2)◦ [10].
Since the angle β is very close to right angle, the dominant deformation is or-

thorhombic with orthogonal system of axes
→
a ,
→
b ,
→
c 0. The

→
c 0 axis is usually

chosen parallel to cubic [001] direction,
→
a ||

[
110
]

and
→
b ||
[
110
]
. The elementary

cell now contains 32 Fe(A) sites and 64 Fe(B) sites which are grouped in quartets
of crystallographically equivalent sites due to centration and ac-glide symmetry.
Fractional coordinates of the atoms in the magnetite Cc cell were published by
Senn et al. [1]

Orthorhombic Twinning

Cooling of magnetite through the Verwey transition is generally accompanied by
orthorhombic twinning as the cubic→ orthorhombic symmetry lowering provides
six types of orthorhombic domains (the indices refer to cubic cell):

O1 ≡ ~a ‖ [1̄1̄0], ~b ‖ [11̄0], ~c0 ‖ [001] (2.1)

O2 ≡ ~a ‖ [11̄0], ~b ‖ [110], ~c0 ‖ [001]

O3 ≡ ~a ‖ [01̄1̄], ~b ‖ [01̄1], ~c0 ‖ [100]

O4 ≡ ~a ‖ [011̄], ~b ‖ [011], ~c0 ‖ [100]

O5 ≡ ~a ‖ [1̄01̄], ~b ‖ [1̄01], ~c0 ‖ [010]

O6 ≡ ~a ‖ [1̄01̄], ~b ‖ [1̄01], ~c0 ‖ [010]

However, the orthorhombic twinning can be avoided if the cooling happens in
an external magnetic field, because the crystallographic axes correspond to the
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hard, intermediate and easy magnetization directions. For example, Mizoguchi

applied Bext = 1.5 T parallel to [113] or
[
123
]

[13] and
→
Bext||

[
112
]

[14], while
Abe et al. [15] employed a field forming an angle of 40◦ with [001] in

(
110
)

plane
to suppress orthorhombic twinning (the indices refer to cubic cell). As a result,

the
→
c 0 axis was set parallel to [001] and

→
a ,
→
b were unambiguously defined.

Monoclinic Twinning

Orthorhombic deformation is accompanied by tiny monoclinic deformation – the

monoclinic
→
c axis is tilted by an angle of ≈ 0.23◦ from the orthorhombic

→
c 0 axis

towards the − →a axis. However, impact of this small tilt on magnetic anisotropy

is significant – the magnetization easy axis is neither the
→
c 0 nor the

→
c axis,

but it is canted by ≈ 2◦ towards − →
a direction [16]. For this magnetization

direction, the number of magnetically non-equivalent sites is the same as the
number of crystallographically non-equivalent sites – i. e. there are 8 magnetically
non-equivalent Fe(A) sites and 16 magnetically non-equivalent Fe(B) sites.

Two equivalent cantings exist and thus a monoclinic twinning occurs. The
monoclinic twinning cannot be prevented by an external magnetic field. Nev-
ertheless, a proper combination of a pressure and the field may eliminate the
both the orthorhombic and monoclinic twinning – e. g. Abe et al. [16] applied
Bext = 1.35 T parallel to cubic [001] axis and simultaneously squeezed magnetite
crystal in the cubic [111] direction. Unless the monoclinic twining is removed,
equal probability of the two possible monoclinic twins is usually assumed [13],
[14], [16].

2.2 The Verwey Transition and the Charge Or-

dering

The typical anomaly connected with the Verwey transition concerns a rather
sharp step in temperature dependence of DC electrical conductivity – see Fig. 2.4
[17]. Other anomalies at TV can be observed e. g. in the AC susceptibility, specific
heat or magnetization measurements. The original hypothesis of the Verwey
transition origin comprised a charge ordering of Fe2+ and Fe3+ B site cations in
alternating (001) layers below TV [18]. The process of the ordering is facilitated
by electron hopping between the cation sites, while the thermal excitations above
TV break the ordering. However, this concept was found inadequate by later
works.

Several experiments [19], [20], [21] suggested that the transition is driven
probably by the Coulomb interaction rather than by the magnetic interaction.
Taking into account the strength of the nearest neighbour Coulomb interaction,
Anderson [22] interpreted the Verwey transition as a transition between the long
range ordered (LRO) (below TV) and short range ordered (SRO) (above TV)
states. The SRO is described by the Anderson condition: the sum of the charges
of the 4 nearest neighbour Fe(B) ions forming a tetrahedron (see Fig. 2.3) is
constant – i. e. each tetrahedron contains 2 Fe2+(B) and 2 Fe3+(B) ions. The LRO
order below the Verwey transition shall be caused by the next nearest neighbour
Coulomb interaction or some other additional interaction.
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Figure 2.4: Temperature dependence of DC electrical conductivity of magnetite.
[17]

Various other detailed concepts were proposed to explain the experimental
data. Several polaron (i. e. considering electron-phonon interaction) models were
derived in order to understand the temperature dependence of electrical conduc-
tivity. The small polaron model developed by Ihle and Lorenz [23], [24] describes
the data in terms of polaron hopping and band conductivity while achieving a
good agreement with experiments [25].

The anomaly in magnetization at TV as well as the very low mobility of charge
carriers above TV are treated in the magneto-electronic model of Belov [26] by
considering the Vonsovskii exchange interaction. Below TV, the Vonsovskii inter-
action causes localization and ordering of the hopping electrons into a sublattice
antiferromagnetically coupled to the B sublattice. Whereas above TV, this order-
ing is broken but the electron mobility is still impacted.

Various models of charge ordering in the low-temperature LRO phase based
on experimental data (e. g. Refs. [10], [13], [20], [27], [28], [29]) or ab initio
calculations (e. g. Refs. [30], [31], [32], [33], [34], [35], [36]) were published. The
57Fe NMR measurements [37] indicated the charge carrier localization (at least
at the characteristic timescale of the experiment) but also dismissed the sharp
categorization of Fe(B) ions as Fe2+ and Fe3+ due to a strong mixing of the
iron ion states. Based on his NMR data, Mizoguchi [14] proposed the charge
ordering below TV as a frozen charge density wave. However, a lack of knowledge
of the precise crystal structure of the low-temperature phase presented a major
impediment in the search for the real charge ordering.

This was changed recently by Senn et al. [1] – they reported the crystal
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structure of the Cc phase of magnetite, as well as the information of Fe(B) charges
in the form of bond valence sums, which allowed them to conceive a model of
trimerons. The trimeron consists of three nearest-neighbour Fe(B) ions in a line.
The distances between these ions are typically shorter compared to the average
Fe(B)-Fe(B) bonds. A part of the minority-spin t2g electron of the Fe2+-like ion
in the trimeron centre is transferred to the two Fe3+-like ions at the ends. The
trimerons are connected together through the end ions (with one exception) and
thus compose a complex network. There are two Fe(B) ions which are not parts
of any trimeron. The work in Ref. [1] was followed by ab initio calculations of
electronic structure [38].

C. H. Patterson in his recent work [39] carried out another ab initio calcu-
lation (employing the hybrid Becke, three-parameter, Lee-Yang-Parr (B3LYP)
exchange-correlation potential) of electronic structure of the low-temperature
phase of magnetite based on the crystal structure data from Ref. [1]. The re-
sults of the calculation were accompanied by an alternative concept of the charge
ordering of Fe(B) ions. According to Patterson, six from the ten shortest Fe(B)-
Fe(B) bonds from bimodal Fe(B)-Fe(B) distance distribution compose a branched
broken zig-zag chain with delocalized minority-spin 3d electrons, whereas the re-
maining four bonds are one-electron bonds between Fe(B) ion pairs. (Within
the trimeron model, these ten shortest Fe(B)-Fe(B) bonds are contained in the
trimeron network.)

The work of Senn et al. [1] indicate that from a crystallographic point of view,
a cooling through the Verwey transition can be described as a freezing of a large
set of phonon modes. The mechanism and dynamics of the Verwey transition was
studied in the context of trimeron model by S. de Jong et al. [40] by means of
pump–probe X-ray diffraction and optical reflectivity methods. They found that
femtosecond laser excitation applied on a magnetite sample below TV induces
charge transfer resulting within 300 fs into a creation of holes in the trimeron
lattice. When the laser pulse fluence was high enough, this was followed on
1.5± 0.2 ps timescale by a phase separation.

The question of SRO state above the Verwey transition was investigated in
many experiments comprising namely photoemission spectroscopy [41], [42], [43],
[44], various scattering methods [45], [46], [47], [48], [49], extended x-ray absorp-
tion fine structure measurements [50], optical conductivity spectroscopy [51] and
acoustical measurements [52], [53]. The experiments indicate a presence of cor-
related SRO state, probably of the polaronic character (see Refs. [23], [24]). On
the other hand, the 57Fe NMR measurements [37] found no SRO above TV at the
NMR experiment timescale. That means that the possible SRO state above TV

is expected to be fast fluctuating. This might be related to the idea of trimerons
existing above the Verwey transition as quasiparticles [1]. The recent work of A.
Bosak et al. [54] based on the temperature evolution of x-ray diffuse scattering
in magnetite revealed that the SRO state pattern is inherited from the structure
below TV and the Verwey transition is connected with a loss of commensurability.
Their observation of characteristic length varying from ≈ 2 unit cells at a tem-
perature slightly above TV to ≈ 1 unit cell at room temperature implies that the
ordering pattern is related more likely to trimeron complexes than to individual
trimerons.
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2.3 Substitution Defects in Magnetite

If structural defects like cationic substitutions or vacancies are present in mag-
netite lattice, they can significantly influence physical properties of studied sam-
ple. The most representative manifestation of this influence is a decrease of the
Verwey transition temperature when a concentration of substitution or vacancies
in the sample increases [55], [56], [57], which is illustrated in Fig. 2.5 [58]. If the
concentration exceeds a critical limit (denoted in figure 2.5 by vertical line), the
Verwey transition is no longer the first order transition – see Refs. [3], [58]. Beside
the changes of TV, the temperature dependences of electrical resistivity [57], [59]
as well as Mössbauer spectra [8], [60], [61], [62] were measured for various con-
centrations and types of substitution. Due to the impact of the charged defects
on electronic structure of the B sublattice, a deeper investigation of substituted
or vacancy-containing samples may shed a light on the related questions.

Figure 2.5: Dependence of the Verwey transition temperature on sample com-
position. The range on the left from the vertical line corresponds to the first
order transition. [58]
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Chapter 3

Objectives and Strategies

This study shall contribute to the answers to the questions concerning the charge
ordering in the long range ordered state below the Verwey transition and the
electronic ordering and processes in the high-temperature phase. The focus will
be placed on the hyperfine interactions and the underlying electronic structure.
The data obtained for pure magnetite will be complemented by the results for
magnetite with various substitution defects. The results of new experiments and
calculations as well as already available data will be analyzed and interpreted in
the context of the current knowledge about magnetite.

Below the Verwey transition, the investigation will be based on a thorough
analysis of ab initio calculations of the electronic structure and hyperfine fields
(taking advantage of the precise crystal structure published by Senn et al. [1])
in combination with a rigorous quantitative reanalysis of the experimental 57Fe
NMR data of Mizoguchi [14]. The results shall allow for an assessment of the
validity of the trimeron concept and the Patterson’s model [39] and for a deeper
understanding of the charge-ordered structure and properties of these models.
A reliable detailed assignment of NMR signals below the Verwey transition to
corresponding crystallographic sites is not known yet, thus a comparison of the
hyperfine parameters extracted from the ab initio calculations and from the ex-
perimental data shall not only corroborate the calculation results but also seek
links between particular NMR signals and crystallographic sites. Employing the
acquired knowledge, an improvement of the current insight into the impact of
substitution defects on electronic structure is expected from an analysis of 57Fe
NMR spectra of magnetite samples with various types and concentrations of the
defects. Further, the link between the ab initio calculation results and another
experimental hyperfine method will be created by a simulation of Mössbauer
spectrum, which will allow for a comparison with corresponding experimental
data.

Above the Verwey transition, the work will focus on an analysis of manifes-
tations of cationic defect presence in 57Fe NMR spectra, which comprise namely
satellite signals and line broadening. Temperature evolution of both effects will
be studied for various types of substitution defects. The dependences of satellite
signal frequencies will be analyzed in comparison with an adapted mean field
model. The line broadening will be studied in a broader context of anomalous
temperature dependence of linewidths exhibited by magnetite above the Verwey
transition and a search for a relation to electronic processes will be attempted.
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Chapter 4

Hyperfine Interactions

Hyperfine interactions are very sensitive to the crystal and magnetic, as well as
electronic structure of the sample in a neighbourhood of a particular nucleus.
This renders the study of hyperfine interactions a very suitable tool for investiga-
tion of magnetically ordered materials – both unperturbed and defect-containing
systems.

4.1 Magnetic Hyperfine Interaction

4.1.1 Nuclear Magnetic Moment

Nuclear spin
→
I is a vector sum of spin and orbital angular momenta of nucleons.

Magnitude of nuclear spin |
→
I | is related to a nuclear spin quantum number I

(0, 1/2, 1, 3/2, ...):

|
→
I | = ~

√
I (I + 1). (4.1)

The z-component of the nuclear spin is determined by nuclear spin magnetic
quantum number m (−I, −I + 1, ..., I − 1, I)

Iz = ~m. (4.2)

Nuclear magnetic moment is given by a product of the nuclear spin and gyro-
magnetic ratio γ or it can be expressed equivalently using nuclear g factor (µN is
nuclear magneton)

→̂
µ = γ

→̂
I =

gµN

~
→̂
I , (4.3)

while the following holds for z-component:

µ̂z = γÎz =
gµN

~
Îz. (4.4)

4.1.2 Hamiltonian of Magnetic Hyperfine Interaction

Assuming that the nuclear magnetic moment
→
µ is placed in a (static) magnetic

field
→
B0, the interaction can be described by Hamiltonian

Ĥ0 = −
→̂
µ ·

→
B0. (4.5)
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Choosing
→
B0 = (0, 0, B0) allows to rewrite the Hamiltonian as

Ĥ0 = −γÎzB0 = −gµN

~
ÎzB0. (4.6)

The values of magnetic quantum number m (see (4.2)) determine energy eigen-
values:

Em = −γ~mB0 = −gµNmB0. (4.7)

The set of 2I + 1 energy eigenvalues represents Zeeman multiplet. Equidistant
energy levels of the multiplet are linked with particular orientations of the nuclear

magnetic moment with respect to
→
B0 direction.

4.1.3 Hyperfine Field

In magnetically ordered matters, a dominant contribution to a local magnetic field
at nuclei is the hyperfine field, which arise from magnetic moments of electrons:

→̂
Bhf = −µ0µB

2π

∑
i

 →̂l ir3
i

+

→̂
s i
r3
i

−
3

(
→̂
s i ·

→
r i

)
→
r i

r5
i

+
8π

3

→̂
s iδ
(→
r i

) , (4.8)

where the index i ranges over all electrons in the material, µ0 stands for vacuum

permeability, µB for Bohr magneton,
→̂
l i for orbital moments and

→̂
s i for spins of

particular electrons, while
→
r i denotes their positions (with respect to nucleus).

The first term of this formula describes magnetic field originating from electron
orbital moments, the next two terms represent dipolar interaction between nu-
cleus and electron spins, whereas the last term denotes Fermi contact interaction
– the equation can be thus schematically rewritten as

→̂
Bhf =

→̂
B’orb +

→̂
B’dip +

→̂
B’cont. (4.9)

In the case of a calculation of hyperfine field, it is convenient to split the summa-
tion in equation (4.8) to a summation over on-site electrons and to a contribution
of electron magnetic moments at other sites of crystal lattice. Therefore, the
relation (4.9) changes to

→̂
Bhf =

→̂
Borb +

→̂
Bdip +

→̂
Bcont +

→̂
Blat. (4.10)

Hyperfine Field Anisotropy

Due to the anisotropic nature of crystal lattice environment, the hyperfine field
Bhf at a particular site in a crystal in general significantly varies depending on

the direction of magnetization
→
M . Assuming that 4th and higher order terms in

direction cosines ϑα, α = a, b, c (with respect to orthogonal axes1) of ~M may
be neglected, magnitude of the hyperfine field at a particular site in a crystal can
be expressed as

1such as orthorhombic axes
→
a ,
→
b ,
→
c 0 common for an approximate description of low-

temperature phase of magnetite
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Bhf = Biso +Baaϑ
2
a +Bbbϑ

2
b +Bccϑ

2
c + 2(Babϑaϑb +Bacϑaϑc +Bbcϑbϑc) =

= Biso +

ϑaϑb
ϑc

 ·
Baa Bab Bac

Bab Bbb Bbc

Bac Bbc Bcc

 ·
ϑaϑb
ϑc

 = Biso +

ϑaϑb
ϑc

 · B̂ani ·

ϑaϑb
ϑc

 ,

(4.11)

where the isotropic field Biso and anisotropy tensor B̂ani (Tr
[
B̂ani

]
= 0) are

separated. The tensor of anisotropy can be transformed into a canonical form

B̂′ani =

B′a 0 0
0 B′b 0
0 0 B′c

 (4.12)

while principal axes ~pa, ~pb and ~pc of the tensor are obtained. A simple parameter
serving as a measure of hyperfine field anisotropy can be defined:

Bani =

√
1

3
((B′a −B′b)2 + (B′b −B′c)2 + (B′c −B′a)2) =

√
B′2a +B′2b +B′2c .

(4.13)

4.2 Electric Hyperfine Interaction

4.2.1 Charge of Nucleus

A description of electric potential ϕN

(→
r
)

produced by a charge of nucleus usually

employs multipole expansion

ϕN

(→
r
)

=
1

4πε0

[
q

r
+

→
p · →r
r3

+
1

2

∑
i,j

Qij
xixj
r5

+ ...

]
, (4.14)

where q is a total charge,
→
p is a dipole moment and Qij represents a quadrupole

moment, which can be expressed using a volume charge density ρN

(→
r
)

:

q =

∫
V ’

ρN

(→
r’
)
dV ’ (4.15)

→
p=

∫
V ’

→
r’ ρN

(→
r’
)
dV ’ (4.16)

Qij =

∫
V ’

(
3xi’xj’− δijr’2

)
ρN

(→
r’
)
dV ’ (4.17)

Quantum mechanics yields the following relation for the charge density

ρN

(→
r’
)

=
Z∑
i=1

ePi

(→
r’
)
, (4.18)
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where e is an elementary charge and

Pi

(→
r’
)

=

∫
|ψ
(
→
r

(1)
, ...
→
r

(i−1)
,
→
r’,
→
r

(i+1)
, ...
→
r

(A)
)
|d→r

(1)
...d
→
r

(i−1)
d
→
r

(i+1)
...d
→
r

(A)

(4.19)

(i. e. Pi

(→
r’
)
dV ’ is a probability of nucleon i being located in a volume element

dV ’ containing the point
→
r’). Thus, the expressions (4.15), (4.16) and (4.17) can

be written in the following form where dτ = d
→
r

(1)
...d
→
r

(A)
:

q =
Z∑
k=1

∫
e|ψ|2dτ = Ze (4.20)

→
p=

Z∑
k=1

∫
e
→
r’

(k)

|ψ|2dτ (4.21)

Qij =
Z∑
k=1

∫
e

(
3xi’

(k)xj’
(k) − δij

(
r’(k)

)2
)
|ψ|2dτ. (4.22)

Considering the defined parity of wave function of a nucleus in a stationary state,
the expression (4.21) implies that the dipole moment, as well as higher even-order
moments, are zero.

Nuclear Electric Monopole

The first term in the multipole expansion (4.14) is called a monopole. When
focusing solely on this term, the charge of nucleus is often approximated by a
point charge, which yields electric potential

ϕNm

(→
r
)

=
1

4πε0

Ze

r
(4.23)

for r > 0.
If the finite size of nucleus is taken into account, a better approximation shall

be used [63]: the potential (4.23) applies outside of the nuclear charge radius R,
whereas a homogeneously charged sphere of radius R is usually assumed in place
of the nucleus, i. e.

ϕNm

(→
r
)

=
1

4πε0

Ze

R

(
3

2
− 1

2

( r
R

)2
)

(4.24)

for r ≤ R.
The nuclear charge radius R can be derived from nuclear mean square radius

〈r2
N〉 [64] as

R =

√
5

3
〈r2

N〉. (4.25)
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Nuclear Electric Quadrupole

Quadrupole moment Qij is a symmetric second-order tensor. Transformation of
the tensor into a system of its principal axes eliminates non-diagonal elements.
Taking into account zero trace of the tensor (see equations (4.17) or (4.22)) and
axial symmetry of nuclear charge distribution, only the Qzz element appears to
be independent.

Using the Wigner-Eckart theorem, the quadrupole moment can be expressed
in terms of nuclear spin

Qii = eQ
3I2
i −

→
I

2

I (2I − 1)
, (4.26)

where the quantity Q is called nuclear quadrupole moment. In the case of nuclei
with the spin I < 1, the Q is zero. The spin of 57Fe nuclei in the ground state is
1/2 so there is no interaction comprising nuclear quadrupole moment observable
by 57Fe NMR. However, the first excited state of 57Fe nucleus has the spin 3/2,
thus the nuclear quadrupole interaction with electric field gradient plays a role
in Mössbauer spectra (see part 4.5.4).

4.2.2 Monopole Interaction

The interaction of electrons with the potential generated by nuclear monopole can
be based on the point charge approximation (potential (4.23)) while the effect of
finite size of nucleus is treated as a perturbation. The perturbation potential [65]

∆ϕ (r) =
1

4πε0
Z
e

R

[(
3

2
− 1

2

( r
R

)2
)
− R

r

]
(4.27)

for r ≤ R and ∆ϕ (r) = 0 for r > R allows to express the perturbation energy

∆E =
1

4πε0

2

5
πZeR2ρ0, (4.28)

where ρ0 is electron charge density at nucleus (assumed to be constant within the
nuclear charge radius R).

For constant values of R and ρ which is the case of 57Fe NMR experiments,
∆E presents only a shift of energy levels of the electrons-nuclei system without
any observable effect on NMR transition energies. Nevertheless, the first excited
state of 57Fe nucleus has different R than the ground state, which gives a rise to
isomer shifts in spectra (see part 4.5.3).

4.2.3 Quadrupole Interaction

Electric Field Gradient Tensor

A charge distribution in crystal lattice determines an electrostatic potential ϕ
(→
r
)

.

While the first derivative of the potential corresponds to a negative of the electric
field, the second derivative is gradient of the electric field:

ϕij

(→
r
)

=
∂2ϕ

(→
r
)

∂xi∂xj
(4.29)
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This expression evaluated at the position of a particular nucleus and brought into
a traceless form

Vij = ϕij −
1

3
δij
∑
k

ϕkk (4.30)

is referred to as the electric field gradient (EFG) tensor. The EFG tensor

V =

 Vaa Vab Vac
Vba Vbb Vbc
Vca Vcb Vcc

 (4.31)

can be diagonalized, which yields

V ’ =

 Vxx 0 0
0 Vyy 0
0 0 Vzz

 (4.32)

and principal axes
→
v xx,

→
v yy and

→
v zz. The traceless form implies that only two

elements are independent. By convention, the component of the largest magni-
tude is denoted as Vzz and the remaining components are characterized by the
asymmetry parameter

η =
Vxx − Vyy

Vzz
, (4.33)

while |Vzz| ≥ |Vyy| ≥ |Vxx|.

Hamiltonian of Nuclear Electric Quadrupole Interaction

Based on the relations characterizing nuclear electric quadrupole moment and
electric field gradient, their interaction can be described (in a frame of reference
defined by the principal axes of the EFG tensor) by the following Hamiltonian:

ĤQ =
eQVzz

4I (2I − 1)

[(
3Î2
z − |

→̂
I |2
)

+ η
(
Î2
x − Î2

y

)]
(4.34)

Corresponding eigen energies for I = 3/2 (excited state of 57Fe in Mössbauer
spectroscopy) are given by expression

EQ,m =
eQVzz

4I (2I − 1)

(
3m2 − I (I + 1)

)√
1 +

η2

3
. (4.35)

4.3 Combined Magnetic and Electric Hyperfine

Interaction

In the case of a simultaneous presence of magnetic and electric hyperfine in-
teraction, an analysis of eigen energy levels becomes more complex. While the
monopole interaction can be treated separately, the magnetic and quadrupole
interactions have to be solved en bloc. Combined Hamiltonian

H0,Q = H0 +HQ = −γÎz’B0 +
eQVzz

4I (2I − 1)

[(
3Î2
z − |

→̂
I |2
)

+ η
(
Î2
x − Î2

y

)]
(4.36)
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(where the quantization axis z’ of the magnetic interaction is generally indepen-
dent of the principal axes of the EFG tensor used as a frame of reference in the
quadrupole interaction term) can be solved exactly only in special cases. If one
of the interactions is considerably weaker than the other one, analytical solutions
based on perturbation theory can be used – see e. g. Ref. [66]. Otherwise, nu-
merical methods have to be applied in order to find the solution of Hamiltonian
(4.36) as well as the intensities of possible transitions – note that even transitions
forbidden for a pure (or weakly perturbed) magnetic interaction may occur in
such a case.

4.4 Nuclear Magnetic Resonance Spectroscopy

4.4.1 NMR Principles

Effect of RF Field

Let us assume a nucleus with a magnetic moment
→̂
µ placed in a static magnetic

field B0 – such a system is described by Hamiltonian (4.5). Now we apply also

an external radio-frequency (RF) magnetic field
→
B1 = (B1 cosωzt, B1 sinωzt, 0)

(ωz is angular frequency) beside the static magnetic field
→
B0. Hamiltonian of the

interaction of the nuclear magnetic moment with the magnetic field reads

Ĥ = Ĥ0 + Ĥ1 (t) , (4.37)

where

Ĥ1 = −
→̂
µ ·

→
B1 = −γB1

(
Îx cosωzt+ Îy sinωzt

)
= −γB1

2

(
Î−eiωzt + Î+e−iωzt

)
(4.38)

(Î− and Î+ are ladder operators).
Transitions between the Zeeman multiplet levels induced by the RF field

present the nuclear magnetic resonance (NMR). Perturbation theory approxi-
mation (valid for B1 << B0) yields the probability of transition between states
with quantum numbers m and m’ proportional to perturbation matrix element

Pm’,m ∼ |〈m’|Ĥ1|m〉|2. (4.39)

The form of Hamiltonian (4.38) together with the properties of ladder operators
allow only transitions between neighbouring levels (i. e. m’ = m± 1).

These allowed transitions are connected with an absorption or an emission of
energy quantum |∆E| = γ~B0 (see equation (4.7)). This energy can be rewritten
into a form of ∆E = ~ω0, thus yielding the resonance condition [67]

ω0 = γB0, (4.40)

where ω0 is named Larmor frequency.

21



Nuclear Magnetization

A sum of magnetic moments
→
µi of nuclei in volume V form macroscopic nuclear

magnetization
→
M

→
M=

N∑
i=1

→
µi
V
, (4.41)

where N denotes the number of nuclei in the volume V .
In thermal equilibrium with lattice at temperature T , the Boltzmann dis-

tribution determines occupation probability pm for level Em (corresponding to
magnetic quantum number m) of the Zeeman multiplet

pm =
e
− Em

kBT∑I
m’=−I e

− Em’
kBT

(4.42)

(kB stands for the Boltzmann constant). The equilibrium nuclear magnetization
→
M0 = (0, 0,M0) in the external magnetic field

→
B0 can be calculated using relations

(4.2) and (4.4):

M0 =
N∑
i=1

γ~
V

I∑
m=−I

mpm =
Nγ~
V

∑I
m=−I me

− Em
kBT∑I

m=−I e
− Em

kBT

=
Nγ~
V

IBI

(
Iγ~B0

kBT

)
, (4.43)

where BI (x) denotes the Brillouin function. Assuming Iγ~B0

kBT
<< 1, the equation

transforms into the Curie law

M0 =
Nγ2~2

V

I (I + 1)B0

3kBT
. (4.44)

Bloch Equations

The motion of nuclear magnetization
→
M in a condensed matter in an external

magnetic field
→
B=

→
B0 +

→
B1 (t) (assuming |B1| << |B0|) can be phenomenologi-

cally described by the Bloch equations:

dMx

dt
= γ

( →
M ×

→
B
)
x
− Mx

T2

(4.45)

dMy

dt
= γ

( →
M ×

→
B
)
y
− My

T2

(4.46)

dMz

dt
= γ

( →
M ×

→
B
)
z
− Mz −M0

T1

(4.47)

where T1 is named spin-lattice (longitudinal) relaxation time, T2 is called spin-spin

(transverse) relaxation time and
→
M0 = (0, 0,M0) presents equilibrium magneti-

zation in the field
→
B0.

The first term at the right side of the Bloch equations characterizes
the impact of torsional moment of the external field on the nuclear magnetization.
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Without the RF field (i. e. B1 = 0), nuclear magnetization exhibits the Larmor

precession about the static field
→
B0 direction at the Larmor frequency

→
ω0 = −γ

→
B0. (4.48)

In the presence of the RF field, transformation of relations (4.45), (4.46) and
(4.47) into a frame of reference rotating with the RF field replaces the time-

dependent field
→
B in the equations by a time-independent effective field

→
Bef =

(
B1, 0, B0 +

ωz
γ

)
. (4.49)

In the rotating coordinate system, nuclear magnetization exercises a precession

at a frequency
→
ω1 = −γ

→
Bef about the effective field

→
Bef.

Let us consider now the RF field having a form of a single pulse of length τ .

At start, B1 = 0 and
→
M ||

→
B0. Next, the RF pulse is applied. Right after the

pulse, the nuclear magnetization is tilted to an angle (with respect to z-axis)

θ = γB1τ. (4.50)

This simple sequence thus allows for precession angle adjustment.
The second term at the right side of the Bloch equations provides a

description of a return of the nuclear magnetization into equilibrium. The last
term at the right side of equation (4.47) characterizes the interaction between
nuclear spins and a lattice. The speed of energy transfer from spin system to the
lattice after tilting nuclear magnetization from equilibrium is described by spin-
lattice relaxation time T1. The second terms at the right side of equations (4.45)
and (4.46) determines the decay of transverse components of nuclear magnetiza-
tion also due to fluctuations of Larmor precession frequencies of individual nuclear

magnetic moments. If the field
→
B0 were absolutely homogeneous, the decay rate

would be given by spin-spin relaxation time T2. However, in a real experiment,
Larmor frequencies of particular nuclear magnetic moments vary because of lo-

cal inhomogeneities of the field
→
B0. This leads to a faster decay approximately

described by time T ?2 due to out-of-phase motion of individual moments.

4.4.2 Pulse Sequences

Nowadays, pulse methods definitely prevail in NMR spectroscopy. These methods

apply the excitation RF field
→
B1 (t) as short pulses, whereas the response of

nuclear magnetization is recorded after or between the pulses. The pulse length
is supposed to be very short compared to T1 and T2 relaxation times. This part
briefly describes two simple pulse sequences (FID (free induction decay) and spin
echo) and the CPMG sequence, which is often used for NMR experiments in
magnetically ordered materials.

Free Induction Decay

Free induction decay (FID) pulse sequence (see Fig. 4.1) comprises a single RF
pulse at Larmor frequency of length nuclear magnetization by π/2 (see equation
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(4.50)) – this pulse is called π/2-pulse. Signal induced by transverse component
of preceding nuclear magnetization can be observed after the end of the pulse as

the FID signal. Assuming absolutely homogeneous field
→
B0, the decay of signal

amplitude A in time t (t = 0 corresponds to the start of pulse) would obey this
dependence

A (t) ∼ exp

(
− t

T2

)
. (4.51)

However, absolutely homogeneous field is not the case of a real experiment, thus

local inhomogeneities of the magnetic field
→
B0 result in significantly faster decay

A (t) ∼ exp

(
− t

T ?2

)
. (4.52)

2 t
w

t
w0

π/2 π FID
spin echo

Figure 4.1: The FID and spin echo sequences

Spin Echo

By attaching another RF pulse (at Larmor frequency) length of which provides π
tilt of nuclear magnetization (see relation (4.50)) at time tw after the π/2-pulse,
the FID sequence changes into the spin echo pulse sequence. The π-pulse turns

over the transverse component of nuclear magnetization by π angle about the
→
B1

direction. Therefore, the local magnetization vectors aligns in the time 2tw and
a precession of the transverse component of nuclear magnetization gives a rise
to a spin echo signal (provided that the time tw is not significantly longer than
spin-spin relaxation time T2). Spin echo amplitude is determined by equation
(4.51) (set t = tw).

The CPMG Sequence

Appending more π-pulses in 2tw intervals to the spin echo sequence is the concept
of the Carr-Purcell pulse sequence illustrated in Fig. 4.2. This sequence allows for
a detection of spin echo in every interval between the π-pulses (as well as after the
last pulse), while amplitude of these echoes follows equation (4.51). A drawback
of the Carr-Purcell sequence is its high sensitivity to improper adjustment of
length and intensity of the RF pulses as even a small deviation deflects nuclear
magnetization slightly out of the transverse plane and this error further builds up
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during the pulse sequence. A solution for this cumulative error issue comprises
π/2 phase shift of π/2-pulse with respect to a phase of the π-pulses’ – the result
is called the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. [68]
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Figure 4.2: The Carr-Purcell/CPMG pulse sequence

4.4.3 NMR Spectrum

The NMR spectrum presents a distribution of resonance (Larmor) frequencies of
nuclei in the sample which pulse sequence excited. Time domain record of the
NMR signal obtained in the pulse experiments has to be converted to a frequency
domain by the Fourier transform. It is generally possible to transform the signal
of FID or spin echo directly. On the other hand, it is better to average signals
of individual detected echoes in the CPMG sequence at first – this provides a
waveform similar to a signal of a single spin echo with considerably higher signal-
to-noise ratio (SNR). Nevertheless, a care must be taken if the averaged echoes
come from a time window comparable to spin-spin relaxation time as relative
intensities of spectral lines can be affected by a frequency dependence of this
relaxation rate.

In the case of broad spectrum, it is usually not technically feasible to excite
the whole spectral range at once. Therefore, a wide spectrum has to be mea-
sured step-by-step with a suitable frequency steps considering spectral line width
and pulse lengths. The whole spectrum shall be created as an envelope of sub-
spectra (Fourier transform modules) acquired in particular steps – see Fig. 4.3.
Sometimes, especially if the spectral lines are very broad, the spectra can be con-
structed simply from Fourier transform modules at the excitation frequency of
particular steps.

4.4.4 NMR in Magnetics

In magnetically ordered materials, the local magnetic field at nuclei consists
mainly from the hyperfine field – see part 4.1.3. Time average of the hyper-
fine field in such matter is high even without an external magnetic field. Thus
the NMR experiments on these substances can be carried out even in a zero
external static magnetic field.

Since the hyperfine field reflects the crystal, electronic and magnetic struc-
ture in proximity of resonating nuclei, the NMR frequencies of nuclei at crys-
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Figure 4.3: Illustration how the spectrum is constructed from particular steps

tallographically or magnetically non-equivalent sites are different. Similarly, any
perturbation in the vicinity of a resonating nucleus is able to shift its Larmor
frequency. Thus the resonating nuclei serve as local hyperfine field probes and
the resulting NMR spectrum provides information on hyperfine field distribution.
Every group of magnetically equivalent sites of resonating nuclei yields one spec-
tral signal, while the intensity of this signal is proportional to a number of the
nuclei in this group. Relatively broad distribution of the hyperfine field is the
reason why NMR spectra of magnetics often span over a wide frequency range.

Beside the interaction of nuclear magnetic moments with an external RF field
explained in previous parts, there is also an interaction between the external
RF field and electron magnetic moments, which gives a rise to an oscillating
component of the hyperfine field. As a result, total RF field which interacts
with nuclear moments is in magnetically ordered materials often much stronger
compared to the external RF field. This amplification effect is characterized by
the enhancement factor defined as a ratio of the total RF field amplitude B2 and
the external RF field amplitude B1

ηenh =
B2

B1

. (4.53)

The enhancement factor typically ranges from 1 to 104 depending on material and
magnetic ordering. The value of ηenh for nuclei in magnetic walls usually differs
from the one for nuclei in magnetic domains, because the amplification effect in
the walls originates from wall motion, whereas the enhancement in the domains
is due to a rotation of electron magnetization.

There is also a similar mechanism based on nucleus - electron coupling which
causes an amplification of magnetic field produced by preceding nuclear moments
and thus increases the intensity of detected NMR signal.
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4.4.5 NMR in Magnetite

The ability of NMR to resolve signals originating from nuclei in different groups
of magnetically equivalent crystallographic sites due to the different hyperfine
field makes it a suitable tool for investigation of crystal, magnetic and electronic
structure of magnetite. Spectral structure thus reflects changes of crystal and
magnetic structure of magnetite during the Verwey and spin reorientation tran-
sition – see Fig. 4.4 [69]. Below the Verwey transition, the 57Fe NMR spectrum
consists of 8 lines (two of them accidentally overlapping) from Fe(A) nuclei and
16 lines from Fe(B) nuclei (one of them overlapped by Fe(A) lines). Between
the Verwey and the spin reorientation transitions, there are only one Fe(A) line
and one Fe(B) line in the spectrum. Above the spin reorientation transitions,
the spectrum contains still a single Fe(A) line while the Fe(B) signal splits into 2
lines in an intensity ratio of 1:3.

Figure 4.4: The 57Fe NMR spectra of pure magnetite acquired below the Verwey
transitions (a), between the Verwey and the spin reorientation transition (b) and
above the spin reorientation transition (c) [69]

Individual 57Fe NMR signals in magnetite spectra were resolved in Refs. [37]
and [14]. Nevertheless, assignment of particular lines in Cc phase of magnetite
to corresponding crystallographic sites remains an open question despite a recent
attempt in Ref. [39]. The work of Mizoguchi [14] provides also valuable data of
angular dependences of spectral signal frequencies in an external magnetic field –
see Figs. 4.5 and 4.6. Variation of spectral line frequencies with temperature from
4.2 K to 135 K were also published in Ref. [37], whereas the variation from the
Verwey temperature to 320 K for both Fe(A) and Fe(B) resonances (and up to
400 K for Fe(A) signal only) were reported in Ref. [70] for pure and aluminium-
substituted magnetite and in Ref. [71] for pure magnetite and non-stoichiometric
magnetite.
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Results of measurements of relaxation times in pure magnetite at 4.2 K are
presented in Ref. [37]. While the differences between T1 time of particular spec-
tral signals are relatively modest, the T2 parameters significantly vary. Variation
of relaxation rates of individual lines in magnetite spectra below the Verwey
temperature were reported in Ref. [72] – relaxation times of all Fe(A) signals ex-
hibit similar temperature dependences and the Fe(B) relaxations can be described
by the same words. Relaxation data for zinc-substituted magnetite acquired at
4.2 K, 198 K and 273 K can be found in Ref. [73].

4.5 Mössbauer Spectroscopy

4.5.1 Basic Principle

Mössbauer spectroscopy is based on recoilless emission and absorption of γ ra-
diation [74]. Nuclei in radiation source and in absorbing sample are embedded
in a crystal lattice and provided that the γ transition energy is below a certain
limit (≈ 100 keV), a significant portion of transitions is recoilless thus allow-
ing for observation of the Mössbauer effect [75]. For the purposes of Mössbauer
spectroscopy, the γ transitions between the ground and the first excited state of
given isotope are usually used. These two states typically differ in various nuclear
parameters – see Table 4.1 for data on a common Mössbauer nuclei 57Fe.

Table 4.1: Physical parameters of 57Fe nuclei relevant to Mössbauer spec-
troscopy (µN ≈ 5.051·10−27 J·T−1 stands for nuclear magneton and b = 10−28 m2

for barn unit)

quantity ground state value excited state value

excitation
energy

– E0 = 14.412497(3) keV [76]

half life stable τ1/2 = 98.3(3) ns [77]

spin I = 1/2 I? = 3/2

magnetic
moment

µz,max = +0.09062300(9) µN [78] µ?z,max = -0.1549(2) µN [79]

quadrupole
moment

Q = 0 b Q? = +0.15(2) b [80]

Precise values of γ transition energy are affected by hyperfine interactions
which turns the Mössbauer effect into a useful tool for a study of magnetic and
electronic structure of various materials. However, this implies a necessity for a
variation of the γ ray energy in order to cover the range of energy shifts caused by
the hyperfine interactions. This range is very narrow compared to the transition
energy, thus the desired energy modulation ∆ED can be achieved by a Doppler
shift of the source mounted on a velocity transducer:

∆ED = E0
v

c
(4.54)

(v is the source velocity, c is a speed of light). The velocity v expressed in the
units of mm·s−1 is commonly used in Mössbauer spectra as the energy scale, while
equation (4.54) serves as a conversion relation.
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4.5.2 Lineshape

If there were no line broadening caused for instance by a distribution of hyperfine
parameters or by a thickness of a sample, the absorption lines in Mössbauer
spectra would have a Lorentzian profile

I (∆ED) =
1

π

Γ

(∆ED −∆ED,c)
2 + Γ2

, (4.55)

where I is absorption intensity, ∆ED,c is line centre position and Γ (determining
half-width at half-maximum intensity (HWHM)) is Heisenberg natural linewidth
related to excited state half life τ1/2:

Γ = ~
ln (2)

τ1/2

(4.56)

4.5.3 Isomer Shift

The difference ∆R between nuclear charge radius R of 57Fe nucleus in the ground
state compared toR? in the first excited state implies a difference ∆E’ in monopole
interaction energy. This difference is determined by perturbation energy (4.28)
corresponding to effect of finite size nucleus [65], [63]:

∆E’ = ∆E? −∆E =
1

4πε0

2

5
πZe

(
(R?)2 −R2

)
ρ0 ≈

1

4πε0

4

5
πeZR2 ∆R

R
ρ0. (4.57)

As a result, energy shifts of Mössbauer transitions in both source and absorber
give rise to isomer shift (expressed as a velocity) observable in spectra:

δ’ =
c

E0

1

10ε0
Ze
(
(R?)2 −R2

)
(ρ0 − ρ0,src) (4.58)

(ρ0 and ρ0,src are electron charge densities at nuclei in absorber and in source,
respectively). In the case of 57Fe Mössbauer spectroscopy, the isomer shift δ is
usually expressed with respect to isomer shift δ’Fe of α-Fe metal standard:

δ = δ’− δ’Fe =
c

E0

1

10ε0
Ze
(
(R?)2 −R2

)
(ρ0 − ρ0,F e) (4.59)

(ρ0,F e is electron charge density at nuclei in α-Fe).

4.5.4 Quadrupole Splitting

Excited state of 57Fe nuclei in a zero magnetic field and a non-zero EFG is split
into two (degenerate) energy levels (expressed relative to energy level of the ex-
cited state without any hyperfine interaction) by quadrupole interaction (4.35):

EQ,− 1
2

= EQ,+ 1
2

= −1

4
eQVzz

√
1 +

η2

3
(4.60)

EQ,− 3
2

= EQ,+ 3
2

= +
1

4
eQVzz

√
1 +

η2

3
(4.61)

This is manifested in Mössbauer spectrum by two resonance signals of equal
intensity separated by quadrupole splitting energy

∆EQ = |EQ,− 1
2
− EQ,− 3

2
| = |EQ,+ 1

2
− EQ,+ 3

2
| = |1

2
eQVzz

√
1 +

η2

3
|. (4.62)
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4.5.5 Magnetic Dipole Splitting

Magnetic dipole interaction is responsible for a splitting of energy levels of both
ground and excited state of nuclei (provided that the spin is non-zero) into Zee-
man multiplets (4.7). If there is no quadrupole interaction, energy levels in each
of these multiplets are equidistant. Mössbauer transition occurring between ex-
cited and ground state are affected by the Zeeman splitting and they are subject
to selection rules (unless there is a strong quadrupole interaction present) allow-
ing for a change of m during the transition by only −1, 0 or 1. For 57Fe, this
results in a sextet of spectral lines, relative intensity of which is in a ratio

3
(
1 + cos2θ

)
: 4sin2θ :

(
1 + cos2θ

)
:
(
1 + cos2θ

)
: 4sin2θ : 3

(
1 + cos2θ

)
(4.63)

(θ denotes the angle between the γ ray and magnetic moment of the nucleus) as
determined by Clebsch-Gordan coefficients. Averaging in the case of a powder
sample yields intensity ratio of 3:2:1:1:2:3.

4.5.6 Combined Quadrupole And Magnetic Dipole Split-
ting

Combination of quadrupole and magnetic dipole interactions is described by
Hamiltonian (4.36). If the quadrupole interaction is weak compared to the mag-
netic one, the corresponding 57Fe spectrum consists of a sextet of lines which
are shifted due to the quadrupole splitting. When the quadrupole interaction
gets stronger, it cannot be treated as a perturbation of magnetic interaction any
longer, spectral line positions and also their intensities become significantly af-
fected and forbidden transitions appear.
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Chapter 5

Density Functional Theory

The density functional theory (DFT) in a combination with the adiabatic ap-
proximation opens a way for a solution of the many-electron problem linked with
crystals. Within this theory, the total energy Etot of the ground state is expressed

as a functional of electron density ρ
(→
r
)

:

Etot [ρ] = Ts [ρ] + Eee [ρ] + ENe [ρ] + Exc [ρ] + ENN, (5.1)

where Ts presents kinetic energy of (non-interacting) electrons, Eee corresponds
to the electron-electron repulsion, ENe is Coulomb attraction between nuclei and
electrons, Exc denotes the exchange-correlation energy and ENN stands for elec-
trostatic repulsion between nuclei. According to Kohn and Hohenberg [81], this
functional is minimal for the true ground state electron density.

Unlike to the other terms in (5.1), which can be treated in exact form, the
exchange-correlation energy has to be described by a suitable approximation. The
local spin density approximation (LSDA) expresses Exc using a local exchange-

correlation energy density µxc

(
ρ
(→
r
))

of some particular form :

Exc =

∫
µxc

(
ρ
(→
r
))

ρ
(→
r
)
d
→
r (5.2)

The generalized gradient approximation (GGA) improves the LSDA by an addi-
tion of gradient terms of the electron density to the exchange-correlation energy.
In the case of transitional metal oxides, a self-interaction corrected GGA in a
combination with the Hubbard model (GGA+U(SIC)) [82] presents a suitable ap-
proach achieving a reasonable agreement with experimental data. The GGA+U
method is controlled by the parameter Ueff corresponding to a difference between
on-site repulsion and exchange [83].

Variational principle applied on (5.1) provides Kohn-Sham equations [84]

(−∆ + Vee + VNe + Vxc)ψi

(→
r
)

= εiψi

(→
r
)
, (5.3)

which shall be solved iteratively while keeping a self-consistency – the potentials
(on the left side) depend on electron density which in turn depends on the Kohn-

Sham wave functions ψ
(→
r
)

and their populations ni:

ρ
(→
r
)

=
∑
i

ni|ψi
(→
r
)
|2 (5.4)
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The solution of equations (5.3) shall be found in a suitable basis of functions

φ→
k n

(→
r
)

:

ψ→
k

(→
r
)

=
∑
n

cnφ→
k n

(→
r
)

(5.5)

Within the muffin tin approach common for this type of problem, the crystal
volume is divided into non-overlapping atomic spheres, where the basis functions
are expressed in terms of atomic-like wave functions ul (r, El), and an interstitial
region, in which the plane waves are used. The popular linearized augmented
plane wave (LAPW) method employs the following form of the basis functions
inside the atomic spheres:

φ→
k n

(→
r
)

=
∑
lm

(
A
lm,
→
k n
ul (r, El) +B

lm,
→
k n

.
ul (r, El)

)
Ylm

(→
r
)

(5.6)

(Ylm

(→
r
)

are spherical harmonics and the A
lm,
→
k n

and B
lm,
→
k n

coefficients are set

to match the value and slope of the function at the atomic sphere boundary with
the plane wave) and the following one in the interstitial area:

φ→
k n

(→
r
)

=
1√
ω
ei
→
k n·
→
r (5.7)

(
→
kn =

→
k +

→
Kn, where

→
k is a wave vector in the first Brillouin zone and

→
Kn is a

vector of the reciprocal lattice). The size of the basis set (in both methods) is
usually controlled by the parameter RMTKmax – a product of the smallest atomic

sphere radius RMT and the length Kmax of the largest
→
K vector used.

The LAPW basis can be extended by local orbitals (LO) [85]

φLO
lm

(→
r
)

=
∑
lm

(
Almul (r, E1,l) +Blm

.
ul (r, E1,l) + Clmul (r, E2,l)

)
Ylm

(→
r
)
, (5.8)

each presenting a linear combination of 2 radial functions at different energies and
one energy derivative, which improves the linearization and allows for a consistent
handling of semicore and valence states within the same energy range. The values
of the coefficients Alm, Blm and Clm are chosen to ensure zero value and slope of

φLO
lm

(→
r
)

at the atomic sphere radius.

Higher computation efficiency can be achieved using a standard augmented
plane wave (APW) basis with ul (r, El) at a fixed value of energy El

φ→
k n

(→
r
)

=
∑
lm

(
A
lm,
→
k n
ul (r, El)

)
Ylm

(→
r
)

(5.9)

combined with another local orbital (lo) function

φlo
lm

(→
r
)

=
(
Almul (r, E1,l) +Blm

.
ul (r, E1,l)

)
Ylm

(→
r
)
, (5.10)

in which the Alm and Blm coefficients (ensuring normalization and zero value of

φlo
lm

(→
r
)

at the atomic sphere boundary) do not depend on
→
kn unlike to (5.6) [86].

This approach allows for a significant reduction of the set of the basis functions
and thus also for a faster calculation.
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Chapter 6

Methods

6.1 Sample Preparation

The single crystal samples of magnetite investigated in this work are listed in
Table 6.1. The notation [Fe1−xXx]A[Fe2−x′X

′
x′ ]BO4, where x and x’ denote con-

centrations of substitution defects X and X’, respectively, explicitly indicates the
sublattice occupied by the particular defect. The sample dimensions were typi-
cally in the order of millimetres. Two methods were employed for a preparation
of the samples: a growth in a cold crucible and a floating zone melting. The sam-
ples were kindly provided by prof. J. M. Honig from Purdue University, USA and
prof. V. A. M. Brabers from Eindhoven University of Technology, Netherlands.

Table 6.1: Studied single crystal magnetite samples and their spin reorientation
and Verwey transition temperatures. The three dots (...) denote vacancies.

compound Tsr (K) TV (K) preparation method
[Fe]A[Fe2]BO4 132.7 122.2 floating zone

[Fe0.96Ga3+
0.04]A[Fe1.99Ga3+

0.01]BO4 126.7 117.5 floating zone
[Fe0.993Zn2+

0.007]A[Fe2]BO4 124.0 113.2 cold crucible
[Fe0.991Zn2+

0.009]A[Fe2]BO4 122.5 110.0 cold crucible
[Fe0.983Zn2+

0.017]A[Fe2]BO4 121.0 104.3 cold crucible
[Fe0.97Zn2+

0.03]A[Fe2]BO4 91 cold crucible
[Fe]A[Fe1.994...

0
0.006]BO4 128.0 114.1 cold crucible

[Fe]A[Fe1.9895...
0
0.0105]BO4 cold crucible

[Fe]A[Fe1.973...
0
0.027]BO4 124.0 101.0 cold crucible

[Fe]A[Fe1.992Ti4+
0.008]BO4 128.0 116.4 floating zone

[Fe]A[Fe1.992Ti4+
0.008]BO4 126.0 119.0 cold crucible

[Fe]A[Fe1.98Ti4+
0.02]BO4 110.0 77.0 cold crucible

[Fe]A[Fe1.9Ti4+
0.1]BO4 floating zone

[Fe]A[Fe1.995Al3+
0.005]BO4 128.3 119.7 floating zone

[Fe]A[Fe1.99Al3+
0.01]BO4 floating zone

[Fe]A[Fe1.97Al3+
0.03]BO4 126.5 97.3 floating zone

The cold crucible method of growth from melt (also known as a skull melter)
[87] was carried out in the laboratory of prof. J. M. Honig at Purdue Univer-
sity, USA. The grown single crystals underwent subsolidus annealing in mixtures
of CO/CO2 gas to achieve the desired oxygen stoichiometry. After the anneal-
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ing, the samples were rapidly quenched to room temperature in order to freeze
in the high temperature thermodynamic equilibrium. Although this procedure
creates defects connected with the high temperature disorder, most of the low-
temperature electronic properties are not impacted, which is evidenced by the
sharpness and high temperature of the Verwey transition.

The floating zone method of sample preparation [88] was employed in the
laboratory of prof. V. A. M. Brabers at Eindhoven University of Technology,
Netherlands. Initially, ceramic techniques were used to obtain polycrystalline
rods of appropriate stoichiometric composition. Afterwards, these rods placed in
a N2 atmosphere were exposed to a melting in a floating zone apparatus based on
an arc-image furnace. Subsequent annealing in an O2 atmosphere was intended
for an improvement of the mechanical quality of the samples.

The AC susceptibility measurements performed by prof. A. Koz lowski at the
AGH University of Science and Technology, Krakow and Ing. M. Maryško, CSc.
at the Institute of Physics of the Czech Academy of Sciences, Prague yielded the
Verwey and spin reorientation transition temperatures. The Verwey temperatures
were also used for a verification of the defect concentration based on their general
mutual dependence shown in Fig. 2.5.

6.2 Nuclear Magnetic Resonance Experiments

A basic block diagram of a pulse NMR spectrometer is drawn in Fig. 6.1. The
purpose of the spectrometer is to apply the appropriate RF pulse sequence to an
investigated sample and to record the response of preceding nuclear magnetiza-
tion.

A pulse generator controls the timing and length of excitation pulses and
triggers signal acquisition. A frequency synthesizer generates an RF signal of
requested frequency and phase, which is then led into an input of a modulator –
a device which creates RF pulses from this signal. The pulses are passed through
an attenuator and a power amplifier in order to obtain desired pulse intensity.
Throughout the excitation, an output pulse is send from the power amplifier
through the receive/transmit (RX/TX) switch to an LC resonance circuit (sam-
ple is placed in the coil) contained in the probe, while the input of a preamplifier
is isolated to avoid its saturation or damage. The motion of transverse component
of nuclear magnetization induces a signal in the LC resonance circuit, which is led
to the preamplifier input during the detection period. In this period, the power
amplifier is isolated from the probe to eliminate it as one of noise sources (and
to simply fulfill impedance matching requirements at the same time). Amplified
NMR signal is mixed with the local oscillator RF signal generated also by the
synthesizer at a frequency shifted by intermediate frequency (IF) from the exci-
tation frequency. The mixer output is again amplified in an IF amplifier and then
passed in an in-phase/quadrature (I/Q) detector. The analog-to-digital (A/D)
converter digitizes the in-phase and quadrature signals from the detector outputs
and stores the data in a memory. (Modern NMR spectrometers often implement
an alternative detection method – the A/D converter digitizes directly the IF
amplifier output signal and the subsequent I/Q detection is performed digitally.)
Coherence of the whole setup, which is ensured by a stable frequency reference,
is crucial for a coherent summation of the signal – i.e. the pulse sequence is re-
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peated for many times and the data records from all scans are summed to increase
the SNR, which is proportional to a square root of a number of scans. Acquired
signal records are transferred into a control computer for further processing.

Figure 6.1: Basic block diagram of pulse NMR spectrometer

The NMR experiments performed in this work employed the Bruker Avance
spectrometer in a custom configuration suitable for broadband measurements of
magnetically ordered materials. Typically, the CPMG pulse sequence was used
with π/2-pulse length 1− 2 µs and the number of π-pulses of the order of 10 or
100 (limited by a spin-spin relaxation rate and by a π-pulse time spacing set in
the order of 10 or 100 µs to accommodate the whole echo signal). The repetition
time of the pulse sequence (i. e. time between successive scans), which had to
be long enough with respect to a spin-lattice relaxation rate, ranged from 5 ms
to several seconds and the number of scans was set to values of the order from
10 to 10,000 (according to the SNR). The amplitude of RF pulses was adjusted
for an appropriate excitation of the nuclei in magnetic domains. Receiver gain
allowing for a suitable utilization of the A/D converter input range was chosen.
The detected signal was sampled at either 0.7 or 2 MSps rate and the recorded
data encompassed the whole length of the pulse sequence. A postprocessing of the
data carried out carefully in order to achieve a good SNR of the resulting spectra,
while minimizing the impact of frequency-dependent spin-spin relaxation rates on
a shape of the spectra.

The spectra at 4.2 K were measured with the probe with the sample submersed
in liquid helium in a Dewar vessel. Higher temperatures were provided by Oxford
Instruments helium continuous flow cryostat with the Lakeshore temperature
controller. The measurements which required external magnetic field were carried
out in a water-cooled 0 – 0.7 T electromagnet connected to the PCE A2800 power
supply operating in a current limitation mode.

6.3 Mössbauer Spectroscopy Experiment

The measurement of the 57Fe Mössbauer spectrum was carried out by dr Jan
Żukrowski at AGH University of Kraków, Poland. The experiment employed a
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constant acceleration spectrometer in transmission geometry with a 57Co in Rh
source at ambient temperature. The absorber was kept at 4 K in a closed cycle
refrigeration system. The spectrometer was calibrated using an α-Fe foil of a
thickness of 10 µm. The sample of pure magnetite single crystal was in a form
of a ≈ 100 µm thick plate. The area of the sample exposed to the γ-ray was
of a diameter of ≈ 3 mm. No external magnetic field was applied during the
measurement and cooling of the sample.

6.4 Calculations Based on the Density Functional

Theory

The ab initio calculations based on the density functional theory, which are pre-
sented in this work, were carried out using the WIEN2k software [89]. This
software allows for a convenient combination of both the LAPW and APW+lo
methods in the same calculation. The number of the basis functions amounted to
9500 (RMTKmax = 6.0) and there were 9 k-points in irreducible part of Brillouin

zone. The density of charge was Fourier expanded to Gmax=16 Ry
1
2 .

The parameters of the low-temperature crystal structure published by Senn
et al. [1] were used for the calculations. For a general magnetization direction,
the Cc elementary cell contained 112 non-equivalent ions. Contrary to the work
of Patterson [39], the structure optimization was not employed as the structure
is complicated and many crystal structure parameters would change during the
optimization procedure. Apparently multiple minima of total energy exist and it
is not certain that the correct energy minimum would be reached. The situation
is further complicated by a presence of magnetostriction, which is not taken
into account in the optimization process. Thus the unoptimized experimental
structure was used – average of force acting on the ions was 9.8 mRy · a.u.−1,
while the maximum force was 19.3 mRy · a.u.−1.

There are four sources contributing to total hyperfine field: Fermi contact
interaction (Bcont), dipolar on-site interaction with electron spin (Bdip), on-site
interaction with orbital momentum (Borb) and interaction with other electron
magnetic moments in the lattice (Blat). In the case of the contact contribution, a
semi-empirical approach [90] was used. This method is better than the one used
by Patterson [39] because the corresponding relation (3) in Ref. [39] approximates
the contact field poorly [91]. The necessary values of spin magnetic moments of
the 3d and 4s electrons of iron ions were calculated using RMT(Fe)= 2 a.u. and
the GGA+U method with Ueff = 4.5 eV. Contrary to the work in Ref. [38],
spin-orbit coupling was included in the calculations.

The oxidation states and spin magnetic moments of Fe ions were not deter-
mined in the usual way which takes a sum and a difference, respectively, of spin-up
and spin-down electron density in the atomic spheres around the particular ions.
Instead, the atoms in molecules approach (AIM) [92] was applied. This method
considers atom as a generalized volume around the nucleus and thus takes into
account also the electron density in the interstitial region.
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Chapter 7

Electronic Structure and
Hyperfine Interactions in
Magnetite Below the Verwey
Transition – Results and
Discussion

This chapter presents the results of the investigation of the electronic ordering
and hyperfine field anisotropy in low-temperature phase of magnetite in a context
of the trimeron model proposed by Senn et al. [1]. An important piece of infor-
mation was gained by an analysis of the results of ab initio calculations. Further,
the experimental data from the 57Fe NMR measurements published by Mizoguchi
[14] were rigorously reanalyzed, thus providing a counterpart of the data based
on the ab initio calculations. The hyperfine anisotropy results of both approaches
were then compared and significant correlations were found. A comparison with
the work of Patterson [39] on a similar topic, which was published at the time
when results presented here in parts 7.2.1, 7.2.2 and 7.3 were finished and our re-
lated manuscript of Ref. [93] had been finalized, is provided in the corresponding
parts.

Moreover, the data obtained from the ab initio calculations allowed for a sim-
ulation of Mössbauer spectrum of magnetite which was compared to the spectrum
from the experiment [94]. Finally, the impact of substitution defects introduced
into magnetite was analyzed from differences in the 57Fe NMR spectra of single
crystal samples of magnetite with various substitutions.

7.1 Site Numbering Convention

Currently, there is no reliable unique assignment of the 57Fe NMR resonance sig-
nals to corresponding crystallographic positions available. Mizoguchi [14] num-
bered the signals originating from the A and B site nuclei according to the decreas-
ing nuclear magnetic resonance frequency for magnetization in the easy direction
– see Figs. and . This convention labelling the experimental NMR resonances
A1 through A8 and B1 through B16 is followed in this work. On the other hand,
the ab initio calculations are based on the crystal structure published by Senn et
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al. [1]. The crystallographic sites A1 through A8 and B1 through B16 referred to
in this chapter are distinguished from the experimental NMR signal labels by the
underlined A and B letters and they are numbered in the same order as they are
listed in Ref. [1] – see Table 7.1. The results presented here revealed a grouping
of the B sites (and of the corresponding NMR signals), thus in some figures and
tables, the sites are arranged or have their labels coloured to make their grouping
(discussed in part 7.3.3) apparent.

Table 7.1: Assignment of the site labels used in this work for ab initio calcu-
lations to the crystallographic sites defined by fractional coordinates (x, y, z) as
reported by Senn et al. [1]

Site label
Site notation in

Ref. [1]
x y z

A1 A11 0.87509(2) 0.75133(2) 0.065377(13)
A2 A12 0.87814(2) 0.25204(2) 0.065046(13)
A3 A13 0.62475(2) 0.75276(2) 0.437877(13)
A4 A14 0.62660(2) 0.25398(2) 0.437830(13)
A5 A21 0.874607(18) 0.50477(2) 0.190290(11)
A6 A22 0.880722(18) 0.00074(2) 0.188506(11)
A7 A23 0.625263(19) 0.50162(2) 0.31109(1)
A8 A24 0.629229(18) 0.005024(19) 0.312775(11)
B1 B1A1 0.75057(3) -0.00212(3) 0.002273(14)
B2 B1A2 0.75116(3) 0.49865(3) 0.001114(14)
B3 B1B1 0.00187(3) 0.50050(3) 0.501700(15)
B4 B1B2 -0.00257(2) 0.00076(2) 0.496931(13)
B5 B2A1 0.74758(2) 0.756391(15) 0.252602(14)
B6 B2A2 0.75929(2) 0.252197(16) 0.253673(13)
B7 B2B1 0.00255(3) 0.74372(1) 0.751877(18)
B8 B2B2 0.00214(3) 0.24588(1) 0.751910(17)
B9 B31 0.87694(2) 0.879450(17) 0.379805(13)
B10 B32 0.87644(2) 0.387473(16) 0.380749(13)
B11 B33 0.62663(2) 0.886624(15) 0.121776(12)
B12 B34 0.62878(2) 0.374621(18) 0.123112(13)
B13 B41 0.87599(2) 0.62482(2) 0.376706(14)
B14 B42 0.87543(2) 0.13087(2) 0.374365(15)
B15 B43 0.62566(2) 0.62776(2) 0.125840(15)
B16 B44 0.62788(3) 0.12601(3) 0.126517(16)

7.2 Electronic Structure

7.2.1 Valence Electron Density in Trimeron Planes

One of the most illustrative representations of electronic structure is a map of
electron density. In this case, the density of minority spin valence electrons in se-
lected planes of the trimerons was plotted in Fig. 7.1. (An analogous plot limited
to minority spin iron 3d valence electrons can be found in Appendix as Fig. A.1.)
The electron density was calculated with magnetization in ~c axis. The maps were
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averaged with the sites connected by the ac-glide symmetry operation in order
to suppress possible (although minor) artifacts originating from switching off this
symmetry operation for consistency with the calculations of angular dependences
of the hyperfine field (see part 7.3).

The most apparent feature is that the electron cloud encompassing the cen-
tral Fe2+-like ion of each trimeron is significantly elongated in the trimeron axis
direction. Further, the asymmetry of electron distribution around the end ions
of trimerons is lower (and even negligible in some cases).

These findings align well with the concept of trimerons – a considerable frac-
tion of minority spin 3d electron is found in central ion’s t2g orbital corresponding
to the trimeron axis, while the remainder of the electron is transferred into the
same orbitals of the end ions. The electron density in the vicinity of the central
ion is thus significantly anisotropic. On the other hand, electron clouds around
the end ions are much more symmetric even when the ion participates in multiple
trimerons because the fractional charges are transferred into different orbitals in
this situation.

The results allow for a comparison with the concept recently proposed by
Patterson [39]. Although the picture presented here may be in accordance with
the expectations for inner ions in the zig-zag chain in Patterson’s model, electron
cloud moved towards the chain would be intuitively expected for the chain end
and branch ions (e. g. B1, B13) but this was not found in the electron density
maps. In case of the iron ion pairs not included in the chain (e. g. B5’–B7),
one-electron bonds between such ions would impose similar charge configuration
of the ions which also has not been observed.

7.2.2 Electron Populations and Valence States of Iron

The trimeron model provided in the work of Senn et al. [1] describes distribution
of electrons in the trimeron: if maximum donor-to-acceptor transfer is assumed,
0.6 e (e denotes elementary charge) is located in the central ion’s t2g orbital
corresponding to the trimeron axis direction, whereas 0.2 e is transferred to the
same orbital of each of the end ions. Thus the populations of the iron minority
spin 3d states can be qualitatively determined and compared to the data from the
ab initio calculations – see Table 7.2. (Note that these populations are expressed
in orthogonal coordinates respecting local (pseudo)symmetry of the B sites: ~z
axis is parallel to ~c, ~x axis points in the [110] Cc direction. Thus appropriate
transformation of a raw output of the DFT calculations had to be applied.)

Visualization of the t2g populations obtained from the ab initio calculations is
provided in Fig. 7.2. Similar plot including also the eg populations (Fig. A.2) can
be found in Appendix as well as a visualization of the populations deduced from
the trimeron model (Fig. A.3).1 The correlation between Fig. 7.2 and populations
derived from the trimeron concept is apparent.

For comparison purposes, net charge and Mulliken populations of minority
spin 3d electrons taken from Ref. [39] were included in Table 7.2 (contrary to

1In order to avoid confusion, Figs 7.2, 7.3, 7.6, 7.13, A.2 and A.3 in this thesis depict the
same trimerons which are shown in Fig. 4d in Ref. [1] and the positions of iron ions are also
the same. However, should a comparison be made with Fig. 3 in Ref. [38], offset (e. g. B1B2
(= B4) is not in the centre of the cell) and a partially different set of plotted trimerons have to
be taken into account.
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Figure 7.1: Maps of minority spin valence electron density in trimeron planes.
Each map has 9 Å × 6 Å dimensions. Green lines denote trimerons [1]. Sites of
iron ions participating in the trimeron located on a horizontal axis of a particular
map are indicated next to the map; the centre of the image plane is placed in
the location of the trimeron’s central ion. The monoclinic tilt of ~c axis makes the
standard crystallographic plane notation inconvenient for selected planes, thus
orientation of the planes is specified by normal vector of the plane (which points
out of the page) shown at the

⊙
symbol in combination with an in-plane vector

indicated by an arrow (indices of these vectors are taken with respect to Cc
coordinates). In each row, the plane of the first map forms with the planes of the
other two maps an angle of ≈ 55◦, whereas the angle between the planes of the
last two maps is ≈ 70.5◦. Site numbering follows the convention introduced in
part 7.1; primes indicate the ac-glide symmetry generated sites.
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other population data in Table 7.2, the Mulliken populations are limited to 16
bands right under the valence band maximum) – they correlate very well with
the data presented here and also with expectations based on the trimeron model.
The valence of the iron ions at the B sites can be examined in column nt2g + neg
of Table 7.2 – the values are not far from 1 for Fe2+-like ions, while in the case
of Fe3+-like ions, they are systematically lower, though still apparently exceeding
0. The sum of this column for the 16 B sites is 13.25 electrons, while only 8.00
electrons are expected assuming formally 8 Fe2+ and 8 Fe3+ ions occupying these
sites. The situation at the A sites is also interesting as there are no minority spin
3d electrons expected at all at the Fe3+ ions, but actually nt2g +neg = 0.72. This
effect is caused by a transfer (asymmetric in spin) of electrons from oxygen ligands
to the A and B sites which results in the described excess charge. Therefore, the
AIM method was employed to obtain the valence states more reliably and also
to determine spin magnetic moments. The valence charges yielded by AIM were
scaled by factor 1.6 which brings average valence charge of oxygen to −2, thus
the oxidation states were obtained. The resulting B iron oxidation states are in
good agreement with the values of bond valence sum (BVS) published in [1] – see
the 14th and 15th column of Table 7.2.
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Figure 7.2: Populations of minority spin t2g electrons of the B site iron ions
from the DFT calculations visualized as an angular variation of the electron
density, i.e. the distance of the surface from a given site denotes the density
at the corresponding angle scaled by 3 Å · e−1 coefficient. Green lines highlight
trimerons [1]. Site numbering and label colours follow the convention introduced
in part 7.1; primes indicate the ac-glide symmetry generated sites. (Surface colour
indicating z-coordinate is intended just to improve clarity.)

7.2.3 EFG Tensors

Another important property characterizing the electronic structure is represented
by electric field gradients (EFG) at particular crystallographic sites. Here we
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focus on EFG tensor at the iron sites. Although these data are not experimentally
accessible by means of 57Fe NMR (the spin of 57Fe nuclei in ground state is 1/2,
thus the nuclei exhibit no quadrupole moment), they manifest themselves e. g. in
Mössbauer spectra.

The EFG tensors at the A and B sites extracted from the ab initio calculations
are listed in Table B.1 in Appendix with respect to the orthorhombic coordinate
system (see definition (4.31)) as well as in a canonical form (see definition (4.32))
accompanied by the asymmetry parameters (see relation (4.33)) and principal
axes of the tensors. The tensors are visualized in Fig. 7.3 for the B sites and in
Fig. A.4 in Appendix for the A sites as objects drawn in magnetite elementary cell
– the following formula defines the distance r of object surface from the particular
iron position

r = C · [Vaaϑ2
a + Vbbϑ

2
b + Vccϑ

2
c + 2(Vabϑaϑb + Vacϑaϑc + Vbcϑbϑc)], (7.1)

where ϑα, α = a, b, c are direction cosines with respect to the orthorhombic
axes and C is a suitable scaling coefficient (common for all sites in the plot).

The figures provide an overall picture of size of EFG at particular sites and of
orientation of principal axes of the tensors. In comparison with the B sites, the
EFG at the Fe3+ ions at the A sites is small due to nearly spherical symmetry
of their electronic configuration. On the other hand, Fig. 7.3 shows a more com-
plex situation which shall be interpreted in the context of trimerons. Apparently,
the EFG at the trimeron central ions is significantly larger than at the end ions,
while the principal axis linked with the smallest eigenvalue of corresponding EFG
tensor of central ion is approximately parallel to the trimeron axis. This finding
is in alignment with the expectations derived from the electronic structure of
trimerons: The minority spin charge density around the central Fe2+-like ions is
considerably anisotropic because the charge is located in t2g orbital correspond-
ing to the trimeron axis. In case of Fe3+-like end ions, the roughly spherically
symmetric electron density is affected only by the partial charge transferred from
the central ions. (If the end ion participates in multiple trimerons, the central
ions donate the charge into different orbitals so the impact on the symmetry of
end ion is still small.) The EFG at Fe3+-like ions B8 and B15, which are not
a part of trimeron network, is the smallest from the B sites because the sym-
metry of their electronic configuration is not perturbed by transferred charge.
(An overview graph comparing the Vzz parameters with the Fe(B) ion valences
is provided in Fig. 7.11 in part 7.3.3.) The discrepancy between these results
and Patterson’s model [39] can be demonstrated on Fe(B) pairs which are not in
the zig-zag chain (e. g. B5’–B7): the one-electron bond would imply relatively
similar charge configuration of the ions but the disparity of EFG at these sites is
apparent.

7.2.4 Charge Density at Iron Nuclei

The DFT calculations were also used to determine charge density at iron nuclei –
a quantity which is experimentally accessible by Mössbauer spectroscopy in the
form of isomer shift relative to metallic bcc α-Fe. In the calculations, the charge
density at iron nuclei was obtained as the density at the radial grid point R0
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Figure 7.3: EFG tensors at iron B sites obtained from the DFT calculations
visualized in the elementary cell (scaling coefficient C = 0.05 Å · 10−21 V−1 ·m2).
Green lines highlight trimerons [1]. Site numbering and label colours follow the
convention introduced in part 7.1; primes indicate the ac-glide symmetry gen-
erated sites. (Surface colour indicating z-coordinate is intended just to improve
clarity.)
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nearest to the nucleus position assumed constant over a sphere with radius R0.
The value R0 = 5 · 10−5a0 (a0 ≈ 5.292 · 10−11 m is the Bohr radius) was used, so
the R0 was comparable to the nuclear radius. The resulting charge densities at
iron nuclei ρ0 are listed in Table 7.3.

Table 7.3: Calculated charge density ρ0 at iron nuclei in magnetite and corre-
sponding isomer shift δ determined using equation (7.2) (the isomer shift error
is determined by the fit error of α – see text; a0 ≈ 5.292 · 10−11 m is the Bohr
radius)

DFT site
nominal
valence

state [1]
ρ0 (e · a−3

0 ) ρ0 − ρ0,F e (e · a−3
0 ) δ ± 4% (mm·s−1)

A1 3+ 15308.964 -1.233 0.350
A2 3+ 15308.964 -1.233 0.350
A3 3+ 15308.951 -1.245 0.354
A4 3+ 15308.982 -1.215 0.345
A5 3+ 15308.975 -1.222 0.347
A6 3+ 15308.991 -1.206 0.342
A7 3+ 15308.994 -1.202 0.341
A8 3+ 15308.985 -1.211 0.344
B1 2+ 15306.875 -3.322 0.943
B2 2+ 15306.844 -3.352 0.952
B3 2+ 15306.924 -3.273 0.929
B4 2+ 15307.382 -2.815 0.799
B5 3+ 15308.316 -1.880 0.534
B6 3+ 15308.095 -2.101 0.597
B7 2+ 15306.885 -3.311 0.940
B8 3+ 15308.513 -1.684 0.478
B9 3+ 15307.812 -2.385 0.677
B10 3+ 15308.095 -2.101 0.597
B11 3+ 15308.063 -2.133 0.606
B12 3+ 15308.347 -1.849 0.525
B13 2+ 15306.805 -3.392 0.963
B14 2+ 15307.029 -3.167 0.899
B15 3+ 15308.499 -1.697 0.482
B16 2+ 15306.790 -3.406 0.967

Isomer shift δ is related to the charge density at nucleus by expression (4.59).
However, the uncertainty of nuclear charge radius R? in the excited state prevents
a direct application of equation (4.59) to obtain isomer shift from calculated
charge densities [65]. Instead, the following relation shall be used

δ = α (ρ0 − ρ0,F e) , (7.2)

where α is a coefficient determined by a calibration procedure described e. g. in
Ref. [95]. The procedure comprised a calculation of charge density at iron nu-
clei in various materials (including iron oxides) in the same way as for the
data in Table 7.3. These charge densities were paired with published exper-
imentally observed values of isomer shift (see Table 7.4) and used for fitting
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the dependence (7.2) (see Fig. 7.4). The fit yielded the coefficient value of
α = −0.284± 0.011 mm·s−1·e−1·a3

0 (a0 ≈ 5.292 · 10−11 m is the Bohr radius),
which is close to the value obtained in Ref. [95] (α = −0.291±0.014 mm·s−1·e−1·a3

0

for halides and TiFe using the full-potential linearized augmented plane-wave and
augmented plane wave plus local orbitals methods implemented in the WIEN2k
software) or [96] (α = −0.278 ± 0.028 mm·s−1·e−1·a3

0 for iron complexes using
quasi-relativistic DFT within the zero-order regular approximation). Note that
despite the good agreement with these published results, it was crucial to carry
out the calibration with the particular DFT calculation method (including its
specific parameter settings) instead of just using some of published α values be-
cause the resulting α coefficient significantly varies depending on the employed
DFT calculation method [97], [98].

Table 7.4: Charge density ρ0 at iron nuclei from DFT calculations and experi-
mental isomer shift δexp for various iron compounds (a0 ≈ 5.292 · 10−11 m is the
Bohr radius)

compound ρ0 (e ·a−3
0 ) ρ0−ρ0,F e (e·a−3

0 ) δexp (mm·s−1)

TiFe 15310.829 0.632 -0.145 ± 0.007 [99]
Fe 15310.196 0 0

FeAl 15309.133 -1.064 0.272 ± 0.015 [100]
Fe2O3 15308.139 -2.058 0.47 ± 0.03 [101]
FeF3 15307.628 -2.568 0.489 [102]

YIG a 15308.219 -1.978 0.57 ± 0.05 [103]
YIG d 15308.996 -1.200 0.26 ± 0.05 [103]

Fe3O4 A 15308.866 -1.330 0.36 [104]
(above TV) 0.34 [105]

0.27 ± 0.03 [106]
Fe3O4 B 15307.608 -2.589 0.78 [104]

(above TV) 0.66 [105]
0.67 ± 0.03 [106]

FeS 15307.176 -3.020 1.1 ± 0.1 [103]
FeF2 15305.414 -4.783 1.467 [107]

1.40 ± 0.05 [103]

The isomer shift values determined by equation (7.2) for particular iron sites
in magnetite were added to Table 7.3. The sensitivity of isomer shift to the
configuration of 3d electrons [103] is apparent: δ = 0.34 – 0.35 mm·s−1 for Fe3+

ions at the A sites, while at the B sites δ = 0.48 – 0.68 mm·s−1 for Fe3+-like
ions and δ = 0.80 – 0.97 mm·s−1 for Fe2+-like ions. Although in general, the
dependence of charge density at iron nucleus (and thus of isomer shift) on the
iron ion charge is not monotonic [108] due to different effects of 3d and 4s orbital
populations [109], the nominal iron valence in magnetite is confined to a narrow
range from 2+ to 3+ where more or less proportional behaviour can be expected.
Thus the systematic correlation between the 3d populations and the calculated
isomer shift is not surprising.
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7.4, the line is a fit of equation (7.2). (a0 ≈ 5.292 · 10−11 m is the Bohr radius)

7.3 Hyperfine Field Anisotropy

7.3.1 Analysis of Hyperfine Parameters from the DFT
Calculations

In order to obtain hyperfine field anisotropy tensors and isotropic parts, the ab
initio calculations of the hyperfine field were performed for multiple directions of
magnetization in the ac-, cb- and ab-planes. (This approach can be understood
as a parallel to the experiment of Mizoguchi [14], although there are several
important differences.) The dominant part of the hyperfine field is presented
by the isotropic contact term Bcont (|Bcont| reaches up to 53.8 T for the A sites
and up to 54.9 T for the B sites). The role played by the other hyperfine field
contributions can be judged by their magnitude – for the iron ions at the B
sites, |Bdip| ranges up to 13.7 T, |Borb| to 4.6 T and |Blat| to 1.1 T. Note that
anisotropy of all of these terms is significant. (In Ref. [39], the terms Borb and
Blat were omitted.)

Processing of the output data had to be done with caution: One has to
take into account a tendency of the spin and orbital magnetization to incline
towards the easy magnetization axis caused by spin-orbit coupling if a general
magnetization direction is specified. In this case, the resulting direction of total
magnetization (which was later passed in the fit) differed from the specified di-
rection by at most 10◦ and the magnetic moments of individual iron ions were
collinear as supposed (deviations from the direction of the total magnetization
direction were below 0.5◦). Another caveat concerns the complex dependence of
the total energy on the direction of magnetization which presumably possesses
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multiple local minima. The self-consistent iteration procedure started for close
(or even the same) magnetization directions may be susceptible to converging to
unrelated minima depending on the initial population matrices. Independently
repeated calculation for the specified magnetization direction [301̄] yielded an es-
timate of error of the hyperfine field up to 0.3 T (i. e. 0.4 MHz error of the 57Fe
NMR frequency) caused by this effect.

Fit of Hyperfine Anisotropy Tensors

The dependences of hyperfine fields on magnetization direction are determined
by hyperfine field anisotropy – see part 4.1.3. In order to simplify a compar-
ison of the results with the 57Fe NMR data of Mizoguchi [14], the calculated
hyperfine fields at iron nuclei were expressed as 57Fe NMR resonance frequencies
by considering their direct proportionality characterized by gyromagnetic factor
γ = 1.38156 MHz·T−1 [110]. Thus, the equations from part 4.1.3 can be written
in terms of frequency:

The dependence of resonance frequency f on magnetization direction denoted

by direction cosines ϑα, α = a, b, c (taken with respect to orthorhombic axes
→
a ,

→
b ,
→
c 0) can be expressed as

f = fiso + faaϑ
2
a + fbbϑ

2
b + fccϑ

2
c + 2(fabϑaϑb + facϑaϑc + fbcϑbϑc) =

= fiso +

ϑaϑb
ϑc

 ·
faa fab fac
fab fbb fbc
fac fbc fcc

 ·
ϑaϑb
ϑc

 = fiso +

ϑaϑb
ϑc

 · F̂ani ·

ϑaϑb
ϑc

 ,
(7.3)

where the isotropic term fiso and anisotropy tensor F̂ani (Tr
[
F̂ani

]
= 0) are ex-

plicitly separated as in equation (4.11). The transformation of the anisotropy
tensor into a canonical form

F̂ ′ani =

f ′a 0 0
0 f ′b 0
0 0 f ′c

 (7.4)

yields the same principal axes ~pa, ~pb and ~pc of the tensor as in the case of expres-
sion (4.12). Similarly to relation (4.13), a parameter characterizing the magnitude
of hyperfine anisotropy can be introduced

fani =

√
1

3
((f ′a − f ′b)2 + (f ′b − f ′c)2 + (f ′c − f ′a)2) =

√
f ′2a + f ′2b + f ′2c . (7.5)

In the elementary Cc cell of magnetite, the glide along the ~c axis with the ac-
glide plane creates 8 different pairs of crystallographically equivalent sites from
16 Fe(A) and 16 different pairs of crystallographically equivalent sites from 32
Fe(B).2 However, the sites in these pairs are not magnetically equivalent for a
general direction of magnetization. Taking into account the nature of the glide

2Centration, which is not considered here, just doubles the numbers of sites in the elementary
cell belonging to each group of crystallographically and magnetically equivalent sites.
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symmetry operation, the fac parameter in equation (7.3) is the same for the two
crystallographically equivalent sites in each pair, whereas the parameters fab, fbc
have opposite signs. This is the reason of splitting of the angular dependences of
57Fe NMR frequencies for magnetization in the bc- and ab-planes observed in the
results of the DFT calculations as well as in the results of Mizoguchi [14].

The calculated dependences of the hyperfine field on magnetization direction
were fitted with equation (7.3) and subsequently the canonical form of F̂ani tensors
was found (see Table B.2 in Appendix). Uncertainty of the fitted parameters was
typically below 0.03 MHz for the A sites and 0.03 – 0.6 MHz for the B sites. Fitted
dependences are plotted in Fig. 7.5 – the splitting of the curves for magnetic field
in ac-plane mimics monoclinic twinning in Mizoguchi’s experiment.

The tensors of hyperfine field anisotropy F̂ani were visualized in Fig. 7.6 (the
B sites) and in Fig. A.5 in Appendix (the A sites) in a similar fashion as the EFG
tensors – only the formula (7.1) determining the distance r of object surface from
the position of iron ion in question was modified:

r = C · [faaϑ2
a + fbbϑ

2
b + fccϑ

2
c + 2(fabϑaϑb + facϑaϑc + fbcϑbϑc)] (7.6)

(ϑα, α = a, b, c are direction cosines with respect to the orthorhombic axes
and C is a scaling coefficient). Interpretation of the figures is also closely related
to electronic configuration of particular iron ions. In case of the B sites, the
anisotropy of trimeron central ions is significantly larger compared to the end
ions and the principal axis connected with the smallest eigenvalue of anisotropy
tensor of central ion is the closest to the axis of the trimeron. This observation
reflects that the minority spin electron density around the central Fe2+-like ions
is considerably anisotropic because the charge is situated in a t2g orbital corre-
sponding to the trimeron axis. In contrast, the roughly spherical symmetry of
the Fe3+-like end ions is perturbed only by the partial charge transferred from
the central ions. (In many cases, the end ion participates in multiple trimerons.
Then the charges transferred from the central ions enter different orbitals and the
impact on the symmetry of the end ion is still low.) The anisotropy of Fe3+-like
ions B8 and B15, which are not members of trimeron network, is small because
the symmetry of their charge configuration is not considerably affected. The dif-
ference between the results and the model of Patterson [39] can be shown on
Fe(B) pairs that are not parts of the zig-zag chain (e. g. B5’–B7): relatively sim-
ilar electronic configuration of the ions would result from the one-electron bond,
but the anisotropies of these ions are incomparable. In case of the Fe3+ ions at
the A sites, the small anisotropy is the result of nearly spherical symmetry of
their charge configuration.
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Figure 7.6: Hyperfine field anisotropy tensors of iron B sites extracted from
the DFT calculations visualized in the elementary cell (scaling coefficient C =
0.05 Å ·MHz−1). Green lines highlight trimerons [1]. Site numbering and label
colours follow the convention introduced in part 7.1; primes indicate the ac-glide
symmetry generated sites. (Surface colour indicating z-coordinate is intended
just to improve clarity.)

7.3.2 Reanalysis of the NMR Data of Mizoguchi

In his article [14], Mizoguchi published dependences of the 57Fe NMR frequency
on external magnetic field direction for all A and B sites. The experiment was
performed at 4.2 K on a spherical single crystal sample with orthorhombic twin-
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ning prevented during cooling. The external field Bext = 1.3 T was rotated in
the ac-, bc- and ab-planes (assuming orthorhombic coordinates) by 10◦ steps. For
each of the A and B sites, there are two branches of the frequency dependence
– monoclinic twinning (not incorporated in analysis in Ref. [39]) present in the
sample is a cause of splitting of the curves for the magnetic field in the ac-plane,
whereas the splitting for magnetic field in the ab- and bc-planes occurs because
the sites connected by the ac-glide symmetry are not magnetically equivalent for
magnetization lying in a general direction in these planes.

Calculation of Magnetization Direction

One has to point out that Mizoguchi rotated the external magnetic field, whereas
the magnetization was rotated directly in the ab initio calculations described
in the previous part. In general, magnetization direction is different from the
direction of the external field due to magnetocrystalline anisotropy. Therefore,
the directions of magnetization ~M had to be determined for given directions of
the external field in order to process Mizoguchi’s data properly. A numerical
method similar to a procedure used by Mizoguchi [13] was implemented (unlike
to Ref. [39], where the non-collinearity of the magnetization and the external
magnetic field was neglected in analysis and it was only discussed).

The problem can be formulated as a minimization of energy

E = − ~Bext · ~M + Ean, (7.7)

where Ean stands for the magnetocrystalline anisotropy, which can be ex-
pressed as

Ean = Kaϑ
2
a +Kbϑ

2
b +Kaaϑ

4
a +Kbbϑ

4
b +Kabϑ

2
aϑ

2
b −Kuϑ

2
111. (7.8)

in direction cosines (ϑa, ϑb and ϑ111 are direction cosines of magnetization

taken with respect to the monoclinic ~a, ~b axes and cubic [111] direction (6th and
higher order terms neglected)). [16] The anisotropy constants of magnetite at
4.2 K were determined by Abe et al. [16] (in units of 104 J ·m−3):

Ka = 25.5, Kb = 3.7, Kaa = 1.8,

Kbb = 2.4, Kab = 7.0, Ku = 2.1.
(7.9)

In his works, Mizoguchi [13], [14] employed more precise values:

Ka = 25.52, Kb = 3.66, Kaa = 1.76,

Kbb = 2.42, Kab = 7.0, Ku = 2.13.
(7.10)

Using the values (7.10) and M = 5.09 · 105 A ·m−1 [14], [13], a numerical

calculation of the ~M( ~Bext) dependence was carried out for Bext = 1.3 T – the

result is plotted in Fig. 7.7. Apparently, if ~Bext is in the ac- and bc-planes, ~M lies
almost perfectly in these planes. On the other hand, this does not apply if ~Bext

is in the ab-plane. Thus, even a small misorientation of the external field close
to the hard ~a direction may result in a non-negligible error of the magnetization
direction.
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Figure 7.7: Calculated dependence of magnetization direction on the direction
of the external magnetic field Bext = 1.3 T. Dashed curves indicates magne-
tization trajectory in the monoclinic twin. The dependence was calculated in
orthorhombic coordinates (which do not contain ~c axis tilt).

The situation is slightly complicated by monoclinic twins present in the sample
as a demagnetizing field of one of the monoclinic domains adds to the magnetic
field in the other domain(s) (and vice versa). It seems impossible to find out
the actual configuration of monoclinic domains in the magnetite sphere when Mi-
zoguchi performed his experiment. Therefore, only a primitive model supposing a
homogeneous distribution of both types of domains (in a ratio of 1:1) in the sam-

ple volume was tested. The model yielded slightly different ~M( ~Bext) dependences
which in turn led to small changes of fitted values of fiso and F̂ani. Nevertheless,
the quality of the fit was almost the same as in the case when this model was
not used. Considering that the model is too simple to characterize reality, the
demagnetizing field of the domains was not included in the analysis.

Fit of Hyperfine Anisotropy Tensors

Before fitting the dependence (7.3), the frequency shift caused by the external field

was compensated for by a subtraction of a projection of ~Bext on magnetization
direction (multiplied by the gyromagnetic factor γ) from the NMR frequencies.
The fit reflected the splitting of the curves for each iron site – i. e. fits of all
combinations of assignments of individual branches to monoclinic twins (for ~M

in the ac-plane) and to particular ac-glade symmetry connected sites (for ~M in
the bc- and ab-plane) were tried and the best one was chosen. The signs of fab,
fbc and of b-component of principal axes are arbitrary (but the sign of fab · fbc is
known) since the iron positions connected by the ac-glide symmetry cannot be
distinguished by the experiment. Errors of the fitted parameters were typically
lower than or close to 0.01 MHz in case of the A sites and 0.02 – 0.7 MHz for the
B sites. Subsequently, the anisotropy tensors F̂ani were brought to their canonical
form F̂ ′ani. The results are provided in Table B.3 in Appendix, while fitted curves
are shown in Fig. 7.8.
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7.3.3 Comparison of the Hyperfine Parameters Extracted
from the NMR Data and from the DFT Calculations

Figs. 7.9 and 7.10 present a useful, though simple, comparison of calculated and
experimental 57Fe NMR frequencies: the iron sites are ordered by their decreasing
isotropic part fiso. The situation depicted in Fig. 7.9 is fairly simple – the Fe3+

state of the A site ions is associated with high spin moment and low orbital
moment, thus isotropic part fiso is high and anisotropy fani is low. Variation of fiso

and fani of the A site ions is small as differences of their electronic configurations
are tiny. A different picture is found in Fig. 7.10 displaying the B site parameters
– apparently, both calculated and experimental data can be separated into two
groups. Iron ions in the left part of the graph exhibit higher isotropic part fiso

and smaller anisotropy fani in comparison with the ions in the right part. This
indicates that the iron ions in the left part are Fe3+-like (see Table 7.2) because
the occupation of their minority spin 3d states is low, resulting in higher spin
moment, and thus also higher fiso. Simultaneously, orbital moments of these ions
are low, leading to a small anisotropy. An opposite description would apply to
the Fe2+-like ions in the right part of Fig. 7.10. A more direct comparison of
the fiso and fani (as well as Vzz) parameters from the DFT calculations with the
Fe(B) ion valence is provided in Fig. 7.11, confirming these deductions.
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Figure 7.9: Comparison of isotropic and anisotropic parts of the 57Fe NMR
frequencies of the A site ions obtained from the experiment of Mizoguchi and
from the DFT calculations. The sites are arranged by decreasing fiso. In the
case of the experimental data, site labels respect the convention of Ref. [14]. For
the data from the DFT calculations, the site numbering follows the convention
introduced in part 7.1. The lines are guides for the eye only.

Since the hyperfine data are now divided into groups of Fe3+-like and Fe2+-
like ions, one would be able to interpret the experimental hyperfine parameters in
relation to the electronic configuration of trimerons – the argumentation would be
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Figure 7.10: Comparison of isotropic and anisotropic parts of the 57Fe NMR
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from the DFT calculations. The sites are arranged by decreasing fiso. In the
case of the experimental data, site labels respect the convention of Ref. [14]. For
the data from the DFT calculations, the site numbering follows the convention
introduced in part 7.1. The lines are guides for the eye only.

essentially the same as in the case of the parameters from the DFT calculations,
but a unique link between the hyperfine data and particular crystallographic
positions would be missing.

However, the hyperfine field anisotropy tensors contain much more informa-
tion than the fani parameter, thus allowing for a deeper search for the connec-
tion between the calculated and experimental data. Experimental angular de-
pendences of NMR frequencies can be correlated with the ones from the DFT
calculations by evaluating mean square deviation σ(i, j):

σ(i, j) = [
∑

α=aa,bb,cc

((f calc
iso (i) + f calc

α (i))− (f exp
iso (j) + f exp

α (j)))2

+ 2
∑

α=ab,ac,bc

(f calc
α (i)− f exp

α (j))2]1/2. (7.11)

The index i of the calculated data indicates a particular B site in the Cc cell,
whereas the index j of the experimental data relates to a specific pair of branches
of the frequency dependence. (Considering arbitrary sign of f exp

ab and f exp
bc and

the known sign of their product, the combinations of the signs resulting in the
lowest σ(i, j) were chosen for the evaluation.) The values of σ(i, j) are listed in
Table B.4 in Appendix and graphically presented in Fig. 7.12. They facilitate
association of the B sites with the hyperfine field parameters obtained from the
experiment. Each possible assignment of experimental and calculated data can
be characterized by a total mean square deviation
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Figure 7.11: Isotropic and anisotropic parts of the 57Fe NMR frequencies of
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introduced in part 7.1. The lines are guides for the eye only.

σ =
1

16

16∑
K=1

σ(iK , jK). (7.12)

The assignment determines the sixteen pairs (iK , jK) of indices. Minimal
value of the total mean square deviation was found to be σmin = 11 MHz. The
association corresponding to a diagonal of Fig. 7.12, which presents one of the best
assignments, is visualized in Fig. 7.13 in the same style as Fig. 7.6. Nevertheless,
note that multiple assignments with total mean square deviation close to the
value of σmin exist.

By examination of σ(i, j) values, three groups of the B sites with correlated
hyperfine parameters from experimental and DFT data were found. The members
of these groups are denoted by a colour of the labels in Figs 7.2, 7.3, 7.6, 7.13, A.2
and A.3. The first group consists of eight Fe3+-like ions with smaller anisotropy
– this corroborates the finding based on Fig. 7.10. Further, the examination
successfully matched a group of three crystallographic sites with three NMR lines
which appear in a zero field spectrum [37], [72] at low frequencies separated from
other spectral signals. The ions in this group exhibit similar hyperfine anisotropy
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Figure 7.12: Visualization of mean square deviation σ(i, j) calculated using
equation (7.11) for all combinations of the B site data extracted from the DFT
results and from the experiment. Brightness of each mark is proportional to σ(i, j)
magnitude (black for σ(i, j) = 0 MHz; white for σ(i, j) ≥ 18 MHz) – darker field
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Figure 7.13: Hyperfine field anisotropy tensors of the B sites extracted
from the NMR data visualized in the elementary cell (scaling coefficient C =
0.05 Å ·MHz−1). Assignment with one of the minimal total mean square devi-
ations σ (7.12) was used for the plot. Green lines highlight trimerons [1]. Site
numbering follows the convention introduced in part 7.1; primes indicate the ac-
glide symmetry generated sites. Sites belonging to the same group in Fig. 7.12
have the same label colour. (Surface colour indicating z-coordinate is intended
just to improve clarity.)
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tensors – their longest principal axis is parallel to the ~c0 direction and the other
two principal axes point approximately along the ~a and ~b axes. Finally, the
last group contains five Fe2+-like ions situated in {002} planes of elementary Cc
cell (with the exception of the ion at B14 site) with the principal axes of their
anisotropy tensors belonging to the highest (in absolute value) eigenvalues being
close to either [11̄0] or [110] Cc direction.

The described correlation procedure based on equation (7.11) can be improved
by taking into account that the DFT calculations yielded both isotropic parts and
anisotropy tensors systematically overestimated. Therefore, a renormalization of
these data in order to match their average with the average of experimental data
may suppress this effect:

σ′(i, j) = [
∑

α=aa,bb,cc

((cisof
calc
iso (i) + canif

calc
α (i))− (f exp

iso (j) + f exp
α (j)))2

+ 2
∑

α=ab,ac,bc

(canif
calc
α (i)− f exp

α (j))2]1/2.
(7.13)

ciso =

∑
j=1..8 (A sites)
j=1..16 (B sites)

f exp
iso (j)∑

i=1..8 (A sites)
i=1..16 (B sites)

f calc
iso (i)

cani =

∑
j=1..8 (A sites)
j=1..16 (B sites)

f exp
ani (j)∑

i=1..8 (A sites)
i=1..16 (B sites)

f calc
ani (i)

Values of renormalization coefficients follow: ciso = 0.96 and cani = 0.32 for
the A sites; ciso = 0.94 and cani = 0.65 in the case of the B sites. The mean square
deviations σ′(i, j) for the B sites listed in Table B.6 in Appendix thus provide more
reliable measure of match of particular experimental and calculated hyperfine
parameters not affected by the systematic overestimation of hyperfine field from
the DFT calculations. The structure of graphical representation of σ′(i, j) in
Fig. 7.14 is the same as in Fig. 7.12, thus it corroborates the interpretation
provided above. Minimal value of a total mean square deviation calculated from
these values using equation (7.12) is σ′min = 5.2 MHz. Again, there are multiple
assignments with total mean square deviation close to σ′min and the assignment
plotted in Fig. 7.13 is one of them.

In the case of the Fe3+ ions at the A sites, the hyperfine field anisotropy
is low and the isotropic terms vary only a little. Thus neither the correlation
of the hyperfine parameters obtained from the experiment and from the DFT
calculations based on equation (7.11) (see Table B.5 and Fig. A.6 in Appendix)
nor the improved one using renormalization defined by equation (7.13) (see Table
B.7 and Fig. A.7 in Appendix) allow for any attempt to assign 57Fe NMR signals
to particular crystallographic sites.

64



_B12

_B15

_B8

_B5

_B10

_B11

_B6

_B9

_B4

_B14

_B3

_B1

_B2

_B7

_B16

_B13

B
3

B
2

B
1

B
8

B
1
1

B
9

B
6

B
4

B
5

B
1
0

B
1
2

B
7

B
1
3

B
1
4

B
1
5

B
1
6

si
te

 -
 D

F
T

 r
es

u
lt

s

site - experiment

Figure 7.14: Visualization of mean square deviation σ′(i, j) calculated using
equation (7.13) for all combinations of the B site data extracted from the DFT
results and from the experiment. Brightness of each mark is proportional to
σ′(i, j) magnitude (black for σ′(i, j) = 0 MHz; white for σ′(i, j) ≥ 15 MHz)
– darker field means better match. The site numbering follows the convention
introduced in part 7.1. The sites are arranged to make their grouping (see text)
apparent.
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7.4 Mössbauer Spectra Simulation

The information on hyperfine fields (isotropic parts and anisotropy tensors) and
electronic structure (EFG tensors and charge density at nuclei) at the iron ions in
magnetite extracted from the DFT calculations in the previous parts allows for
a simulation of corresponding 57Fe Mössbauer spectrum of the low-temperature
phase of magnetite in a zero external magnetic field.

The isomer shifts of particular iron sites determined by the charge density at
the iron nuclei are listed in Table 7.3. Similarly, the EFG tensors can be easily
found in Table B.1. The hyperfine fields shall be calculated using the equation
(4.11), where the parameters Biso and B̂ani can be obtained from fiso and F̂ani in
Table B.2 by dividing by the 57Fe gyromagnetic ratio γ. Since there is no external
magnetic field assumed, the magnetization lies in the easy direction.

Comparable strength of magnetic and quadrupole interaction (together with
general EFG tensors) requires a numerical solution of equation (4.36) as no an-
alytical approximations based on the perturbation theory are valid in this case.
Therefore, the FitSuite 1.0.4 program [111] was employed for the simulation.
For a convenient comparison with the experimental data, the HWHM linewidth
was set to 2Γ and two types of samples were considered: a single-domain single
crystal oriented in [201] direction towards the γ-ray and a powder sample. The
resulting simulated spectra are presented in Figs. 7.15 and 7.16 together with
the experimental data [94].3 (Contributions of individual iron sites to the spec-
tra are shown in Figs. A.8 and A.9 in Appendix.) The experimental spectrum
was acquired at 4 K from a thin plate (cca 0.1 mm) single crystal sample with
[001] direction parallel to γ-ray.4 The sample was grown in a skull melter [114]
and subsequently underwent a subsolidus annealing in CO/CO2 gas mixtures to
establish appropriate stoichiometry [115], [116].

Larger splitting of the outer lines in the simulated spectra in Figs. 7.15 and
7.16 than in the experimental data can be attributed to the systematic overesti-
mation of the hyperfine fields by the DFT calculations. This can be corrected by
incorporating renormalization coefficients (7.13) (introduced in part 7.3.3) into
equation (4.11):

Bhf = cisoBiso + cani(Baaϑ
2
a +Bbbϑ

2
b +Bccϑ

2
c

+2(Babϑaϑb +Bacϑaϑc +Bbcϑbϑc)) =
(7.14)

= cisoBiso + cani

ϑaϑb
ϑc

 ·
Baa Bab Bac

Bab Bbb Bbc

Bac Bbc Bcc

 ·
ϑaϑb
ϑc

 =

= cisoBiso + cani

ϑaϑb
ϑc

 · B̂ani ·

ϑaϑb
ϑc


3The simulation can be compared also with other published experimental Mössbauer spectra

of magnetite – see e. g. Refs. [104], [105], [106], [112], [113].
4No magnetic field was applied, thus all possible domains produced by the orthorhombic

and monoclinic twinning formed in the sample. Consideration of the magnetization directions
in these domains (with respect to the γ-ray direction) reveals for particular sextets total line
intensities in a ratio corresponding to the one expected in the simulations.
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Figure 7.15: Simulated zero-field 57Fe Mössbauer spectrum of a single-domain
single crystal of (Cc phase) magnetite oriented in [201] direction towards the
γ-ray in comparison with experimental data [94]. The three groups of Fe(B)
components correspond to the three groups of Fe(B) ions in Fig. 7.12.
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Figure 7.16: Simulated zero-field 57Fe Mössbauer spectrum of a powder sample
of (Cc phase) magnetite in comparison with experimental data [94]. The three
groups of Fe(B) components correspond to the three groups of Fe(B) ions in
Fig. 7.12.
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The corresponding simulation outputs are plotted in Figs. 7.17 and 7.18. (See
also Figs. A.10 and A.11 in Appendix showing contributions of individual iron
sites to the spectra.) Although there are still some differences between the sim-
ulation and experiment remaining, they are more evenly distributed in the spec-
trum. Thus the simulation can be considered as an appropriate counterpart to
the experimental data and the information how the particular groups of iron sites
contribute to the spectrum can be extracted as indicated in the figures. Notably
the peak at around 3 mm·s−1 understood by Pasternak et al. [105] as a char-
acteristic feature distinguishing the Mössbauer spectra of the Cc phase from the
cubic phase spectra can be clearly assigned to the group of B7, B13 and B16
Fe2+-like sites. The similarity of spectral contributions of individual Fe(B) ions
belonging to the same group of the B sites implies that a decomposition of exper-
imental Mössbauer spectra into four sextets (8× Fe3+(A), 8× Fe3+-like(B), 5×
Fe5+-like(B), 3× Fe5+-like(B)) is an appropriate approach whereas an identifica-
tion of individual iron sites in the spectra is barely feasible.
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Figure 7.17: Simulated zero-field 57Fe Mössbauer spectrum of a single-domain
single crystal of (Cc phase) magnetite oriented in [201] direction towards the
γ-ray in comparison with experimental data [94]. This simulation is based on
renormalized hyperfine fields (see text). The three groups of Fe(B) components
correspond to the three groups of Fe(B) ions in Fig. 7.12.
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Figure 7.18: Simulated zero-field 57Fe Mössbauer spectrum of a powder sample
of (Cc phase) magnetite in comparison with experimental data [94]. This simu-
lation is based on renormalized hyperfine fields (see text). The three groups of
Fe(B) components correspond to the three groups of Fe(B) ions in Fig. 7.12.

7.5 The Impact of Substitution Defects

The knowledge about the electronic structure of low-temperature phase of mag-
netite gained in the previous parts allows also for a better understanding of the
impact of a presence of substitution defects on electronic ordering and thus also
on hyperfine interactions. Chemical formula of defect-containing magnetite can
be formally written as [Fe1−xXx]A[Fe2−x′X

′
x′ ]BO4, where x and x’ denote concen-

trations of defects X and X’, respectively. The defects affect electronic structure
in two ways: by their charge and by a local deformation of the crystal structure.
In the first approximation, the former shall be in focus as it is expected to result
in more significant changes. Only if the deformation induced by the defect is
large (due to different ion radius), the latter becomes important as well.

The defects entering the A sites primarily affect the 12 iron ions at the B
sites which are the nearest cationic neighbours. In the case of the B site defects,
the nearest cationic neighbours consist of 6 B site ions and 6 A site ions, while
the former are closer than the latter (see Table 2.2). If the substitution entering
a particular site releases more electrons than the original iron ion at the site,
the other iron ions tend to shift their valence towards lower oxidation numbers,
i. e. the B site ions incline to become more Fe2+-like and the valence of the A site
ions might be also slightly affected. In the opposite case when the substitution
disengages fewer electrons, the other iron ions tend to increase their valence so
the B site ions incline to Fe3+-like states, while there is not much space for a
change of the A site iron ion valence. Thus the B sites are expected to be more
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sensitive to the presence of the defects in the structure than the A sites. The
resulting impact on the iron ion electronic ordering is also affected by a change in
the valence of oxygen ions, which present links between the A and B sublattices.

Considering the situation when the Fe2+-like B site ions are inclined to in-
crease their oxidation numbers, the populations of their minority spin electrons
decrease. Thus their spin moments increase, leading to higher magnitude of
isotropic contact field Bcont and of Bdip arising from dipolar on-site interaction
with electron spin. At the same time, their orbital moments drop, resulting in
smaller Borb and thus also lower hyperfine field anisotropy. On the other hand, if
the Fe3+-like ions at the B sites tend to decrease their valence, the consequences
are opposite.

The range of the impact of a single defect is determined by two counteracting
aspects. First, the insulating character of the Cc phase does not allow for a
uniform dynamic distribution of the surplus or deficit charge throughout the
whole crystal, thus the perturbation cannot be easily screened. Second, even
though the trimerons will be broken only locally, the interconnected nature of the
trimeron network (or of the zig-zag chain in the Patterson’s model [39]) implies
that its electronic structure will be partially affected in broader surroundings.

These considerations together with the grouping of the B sites finally allow us
to understand the zero field 57Fe NMR spectra of magnetite containing various
defects, which may thus serve as a descriptive illustration of the situation. Exam-
ples of the spectra accompanied by a spectrum of pure magnetite are presented in
Figs. 7.19 and 7.20. In the spectrum of pure magnetite, the resonances of the A
site Fe3+ ions can be found in a fairly narrow region around 70 MHz. Concerning
the B sites, there are three signals at low frequencies originating from a group of
Fe2+-like ions, five lines from another group of Fe2+-like ions and eight resonances
of Fe3+-like ions in the third group. The last two sets of signals are separated
from the first one but not from each other. Nevertheless, the centre of gravity of
the signal from the group of 5 Fe2+-like ions is lower than that of the group of
Fe3+-like ions.

The spectra of samples with very low concentration of defects plotted in the
upper parts of the figures exhibit only a broadening of spectral lines. It seems that
the broadening of the B lines is larger compared to the A lines. Manifestation
of the expected changes described above becomes apparent for slightly higher
defect concentrations, which can be observed in the lower parts of the plots. (For
clarity, the spectra of pure magnetite convoluted with the Gaussian function are
provided in Figs 7.19 and 7.20 as a reference to allow for an easier distinction
between a plain broadening and a systematic shift of spectral lines.) However,
even in this case, the impact of the defects concerns dominantly the B sites as
the A site signals are only broadened to some expected extent, but there are no
significant shifts or merging into wide bands apparent.

In the case of zinc substituted magnetite [Fe1−xZn2+
x ]A[Fe2]BO4 and magnetite

with vacancies [Fe]A[Fe2−x′ ...
0
x′ ]BO4, the valence of the B site ions affected by the

defects in their vicinity tends to increase and thus the resonance frequencies of
Fe2+-like ions also increase – this can be observed namely at the separated low-
frequency B lines, which transform into a wide band extending to significantly
higher frequencies (in the case of non-stoichiometric magnetite, this band reaches
even up to the high-frequency part of the spectrum, thus illustrating the profound
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Figure 7.19: Low-frequency part of zero-field 57Fe NMR
spectra of magnetite at 4.2 K with various types of defects
([Fe0.991Zn2+

0.009]A[Fe2]BO4, [Fe0.97Zn2+
0.03]A[Fe2]BO4 [73]; [Fe]A[Fe1.9895...

0
0.0105]BO4

[117]; [Fe]A[Fe1.992Ti4+
0.008]BO4 [118]; [Fe]A[Fe1.99Al3+

0.01]BO4, [Fe]A[Fe1.97Al3+
0.03]BO4,

[Fe0.96Ga3+
0.04]A[Fe1.99Ga3+

0.01]BO4 [119], [120], [121]) in comparison with a spectrum
of pure magnetite [73]. The colour of the vertical lines in this figure and in
Fig. 7.20 indicating frequencies of resonance lines of pure magnetite distinguishes
between the A lines (grey) and different groups of the B lines (blue, red, black).
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Figure 7.20: High-frequency part of zero-field 57Fe NMR spectra of
magnetite at 4.2 K with various types of defects ([Fe0.991Zn2+

0.009]A[Fe2]BO4,
[Fe0.97Zn2+

0.03]A[Fe2]BO4 [73]; [Fe]A[Fe1.9895...
0
0.0105]BO4, [Fe]A[Fe1.973...

0
0.027]BO4

[117]; [Fe]A[Fe1.992Ti4+
0.008]BO4, [Fe]A[Fe1.9Ti4+

0.1]BO4 [118]; [Fe]A[Fe1.99Al3+
0.01]BO4,

[Fe]A[Fe1.97Al3+
0.03]BO4, [Fe0.96Ga3+

0.04]A[Fe1.99Ga3+
0.01]BO4 [119], [120], [121]) in com-

parison with a spectrum of pure magnetite [73]. The colour of the vertical lines
in this figure and in Fig. 7.19 indicating frequencies of resonance lines of pure
magnetite distinguishes between the A lines (grey) and different groups of the B
lines (blue, red, black). 72



impact of the vacancies on the electronic structure of magnetite). Another change
can be noticed in the 71.5 - 75 MHz range: the intensity increase in the spectral
range of 71.5 - 73.5 MHz caused by a shift of resonances from lower original
frequencies results in a merge of the signals in the 71.5 - 75 MHz range into a
broad resonance band of heightened intensity.

Opposite situation arises in titanium substituted magnetite [Fe]A[Fe2−x′Ti4+
x′ ]BO4

– the oxidation state of the B site ions in the range of the substitution impact
tends to decrease. Therefore the resonance of Fe3+-like ions tends to move to-
wards lower frequencies, which is apparent especially in the spectral range of
67.5 - 69.5 MHz , where the intensity is considerably higher. Contrary to zinc-
substituted and non-stoichiometric magnetite, the intensity in the range 71.5 -
73.5 MHz does not increase but rather the resonances around 74 MHz are slightly
reduced. On the other hand, the three B site signals at low frequencies broaden
into a single wide resonance signal and shift higher. This resembles the effects
observed in the low-frequency part of the spectra of [Fe1−xZn2+

x ]A[Fe2]BO4 and
[Fe]A[Fe2−x′ ...

0
x′ ]BO4, but the cause is different: The decrease of the valence of

Fe(B) ions results in a decrease of their resonance frequency, thus a part of the
signal is moved from the high-frequency spectral region to the low-frequency one,
leading to a shift of the intensity maximum in the low-frequency part of the
spectrum towards higher frequencies. Although the same effects are expected
in the spectra of magnetite with aluminium substitution (which enters the B
sites if the concentration is not high [60]) [Fe]A[Fe2−x′Al3+

x′ ]BO4, the actual im-
pact of the defects is lower due to a small charge difference between Al3+ ions
and substituted B site ions. Even more specific example is presented by gal-
lium substituted magnetite [Fe1−xGa3+

x ]A[Fe2−x′Ga3+
x′ ]BO4 because the Ga3+ ions

preferentially substitute Fe3+ ions at the A sites (thus their impact is minimal
due to the same valence) but a small fraction (about 20%) of them enter the B
sublattice [122], [123], inducing electronic structure changes comparable to the
case of aluminium substituted magnetite. Therefore, the corresponding spectra
of gallium substituted sample are placed in the upper parts of Figs. 7.19 and
7.20, even though they would fit into the lower parts if only a nominal defect
concentration was taken into account.

A common feature of all of these types of defects in magnetite is the fact that
the manifestation of defect impact in the spectra is limited only to line broadening
if the defect concentration is very low, while it starts to be more apparent for
slightly higher defect concentrations. This implies an existence of a critical defect
concentration at which the crystal areas affected by individual defects start to
overlap, thus turning the locally impacted structure into a globally perturbed
system of the trimeron network. Studying the concentration dependences of 57Fe
NMR spectra published in Refs [73], [119], [117], the critical limit can be roughly
estimated at about 1% of iron ions replaced by the defects with different charge.
This means that the characteristic size of a region impacted by a single defect is
comparable to the size of the elementary cell.
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Chapter 8

Electronic Structure and
Hyperfine Interactions in
Magnetite Above the Verwey
Transition – Results and
Discussion

In the case of pure magnetite above the Verwey temperature, the hyperfine in-
teractions observed by means of the 57Fe NMR spectroscopy exhibit relatively
simple behaviour as shown in part 4.4.5. However, there are still several open
questions concerning linewidths and satellite signals which arise when substi-
tuted samples of magnetite are examined and when the temperature dependence
of NMR spectra is closely studied.

8.1 Impact of Substitution on Electronic Struc-

ture and Hyperfine Interactions

Above the Verwey transition, pure magnetite has half-metallic character. In the
B sublattice, there is one minority spin 3d electron per two Fe(B) sites. This is
often formally expressed in the chemical formula [Fe3+]A[Fe2+Fe3+]2O4 as a 1:1
mixture of Fe2+(B) and Fe3+(B) sites, although the distribution of these 2 Fe(B)
states is definitely not static. Instead, the minority-spin electrons are travelling
across the B sublattice, thus being responsible for electrical conductivity. An
insight into this system with strongly correlated charge carriers can be obtained
by a study of consequences of an introduction of substitution defects.

Substitution valence different from the one of replaced iron ions implies that
the valence of the other ions in magnetite has to change in order to maintain
the whole crystal electrically neutral. Assuming the valence of Fe(A)3+ and O2−

ions constant (at least to some extent), the dominant valence changes happen
at the Fe(B) sublattice, which is prone to such changes due to its mixed-valence
nature. Writing the general chemical formula of defect-containing magnetite as
[Fe3+

1−xX
vX
x ]A[FevB2−x′X

′vX’

x′ ]BO4, where x and x’ denote concentrations of defects X
and X’, respectively, the nominal Fe(B) valence can be calculated using the defect
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concentrations x, x’ and valences vX, vX’ by the following relation:

vB =
5− (vX − 3)x− vX’x’

2− x’
(8.1)

A deviation of vB from 2.5+ shall be understood as a slight prevalence of either
Fe2+(B) or Fe3+(B) states. However, a distribution of time-averaged valence over
the individual Fe(B) ions is not known – some form of screening of the charged
defects can be expected, but the character of such screening and the role of charge
carrier mobility present open questions.

Local impact of various cationic defects on crystal, electronic and magnetic
structure was studied by means of the DFT calculations in Refs. [124] and [125].
The most apparent mechanism through which a non-magnetic cationic substitu-
tion affects local magnetic structure is a breaking of exchange couplings between
the defect site and the iron ions in the vicinity. Further, the previously discussed
change of Fe(B) valence results in a modification of magnetic moments of the
B site iron ions. Finally, the difference between ionic radii of the original iron
ion and of the defect ion causes a local distortion of the crystal lattice – this is
also accompanied by changes in electronic configurations, magnetic moments and
exchange interactions among iron ions in proximity. All these factors lead to a
shift of the hyperfine field at nuclei in the vicinity of substitution defects.

8.2 Information in NMR Spectra

The ability of NMR to resolve signals originating from various crystallographic
sites (and thus to study hyperfine field in different magnetic sublattices sepa-
rately), together with its local sensitivity makes it a suitable tool for an investi-
gation of hyperfine field in both pure and defect-containing magnetite samples.
While the presence of substitution defects results mainly in a line broadening and
changes of the shape of the spectra below the Verwey transition, the higher crys-
tal symmetry above the Verwey transition simplifies the spectra and allows us to
observe satellite signal patterns – resonating nuclei in the vicinity of a defect have
their Larmor frequency shifted. Symmetry considerations determine the number
and relative intensities of the satellite lines [119]: From the resonating nuclei in
the first neighbourhood of the substitution ions or vacancies, there are 2 satellite
signals in a ratio of 1:2 (for substitution at either A or B site) if the tempera-
ture is between the Verwey and spin-reorientation transition, while there are 3
satellite signals in a ratio of 1:1:2 for a temperature above the spin-reorientation
transition. The defect concentration determines total satellite signal intensity
(with respect to the main lines) as well as linewidth of the main resonances. On
the other hand, frequencies of satellite lines do not depend on the concentration.

Temperature dependences of 57Fe NMR spectra of single crystal magnetite
with various types of substitution defects can be found in Refs. [70], [71], [118],
[119], [120], [121], [123]. The spectra thus provide a useful data source for an
analysis of hyperfine interactions in magnetite and impact of the substitution on
them. Examples of the spectra are plotted in Figs. 8.1 and 8.2. Satellite pattern
arising from the resonating iron nuclei at the A sites in the first neighbourhood
of the substitution ions can be identified in spectra of titanium and aluminium
substituted and vacancy-containing magnetite, while the pattern can be reliably
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distinguished from satellite lines originating from resonating nuclei in a larger
distance, which appear close to the main line (not indicated in the plots). How-
ever, only a single satellite resonance coming from iron nuclei at the B sites in
the first substitution neighbourhood was found in spectra of gallium substituted
magnetite. In the case of magnetite with zinc substitution, solely a satellite signal
with the highest splitting between this line and the B lines can be reliably recog-
nized to arise out of the 57Fe nuclei in the first neighbourhood of the substitution
– this signal and the satellite line in the spectra of gallium substituted magnetite
have similar origin.
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Figure 8.1: The 57Fe NMR spectra of substituted magnetite well above the spin
reorientation transition showing the B lines and the satellite signals (labelled
”sat”) from the resonating nuclei in the first neighbourhood of the substitution
ions at the A sites. ([Fe0.993Zn2+

0.007]A[Fe2]BO4 [118])
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Figure 8.2: The 57Fe NMR spectra of substituted magnetite well above the spin
reorientation transition showing the A lines and the satellite signals (labelled
”sat”) from the resonating nuclei in the first neighbourhood of the substitution
ions at the B sites. (Two of the three satellite lines in the spectrum of the
titanium substituted sample are merged together due to their relative proximity.)
([Fe]A[Fe1.995Al3+

0.005]BO4 [119], [Fe]A[Fe1.992Ti4+
0.008]BO4 [118])

8.3 Temperature Dependence of Satellite NMR

Signal Frequencies

Temperature dependences of frequencies of satellite signals arising from the iron
nuclei in the first neighbourhood of the substitution ions are provided in Fig. 8.3,
alongside with temperature dependences of the frequency of the A line and a
centre of gravity of the B lines in the spectra of pure magnetite [37], [70]. In
the cases of the titanium and aluminium substituted samples and magnetite with
vacancies, centres of gravity of the satellite lines are plotted. Experimental data
in Fig. 8.3 were fitted with dependences based on the spin wave theory: for
temperature T much lower than Curie temperature, the resonance frequency f
obeys

f (T ) = f (0)− c1T
3
2 − c2T

5
2 (8.2)

where c1, c2 denote parameters and f (0) stands for the frequency at T = 0 K.
Since the resonance frequency of a particular site is assumed to be proportional

to the magnetization of the corresponding sublattice (unless a phase transition is
crossed), an analysis of the experimental data is based on the mean field method
described in Ref. [7]. In this approach, magnetization mA and mB at the A and
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Figure 8.3: Temperature dependences of 57Fe NMR frequencies of selected sig-
nals plotted together with spin wave approximation fit. (vac data [71], Al data
[70], Ti and Zn data [118])

B sites, respectively, in pure magnetite is determined by relations

mA = SABSA
(λAAmA + λABmB),

mB = SBBSB
(λBAmA + λBBmB), (8.3)

where SA = 2.5 and SB = 2.25 represent spins of the corresponding sublattices,
while BS stands for the Brillouin function. The λαγ coefficient definition (with
α, γ equal to A, B) follows:

λαγ = βSαJαγzγ(α), (8.4)

where β = 1/kBT , superexchange constants Jαγ (symmetrical in α, γ) values are
JAA = -22 K, JAB = JBA = -46 K, JBB = -11 K [7] and zγ(α) denotes the number
of the nearest neighbour α ions to the γ ion.

The magnetization m′A and m′B at the A and B sites, respectively, in the
nearest neighbourhood of the non-magnetic substitution ion or vacancy in defect-
containing magnetite is given by relations analogous to equations (8.3)

m′A = SABSA
(λAAmA + λ′ABmB),

m′B = SBBSB
(λ′BAmA + λBBmB), (8.5)

where the λ′αγ coefficients are defined similarly to (8.4) with the number of mag-
netic ions in the first neighbourhood decremented by one

λ′αγ = βSαJαγ(zγ(α)− 1), (8.6)

78



Set of the equations (8.3) together with the equations (8.5) was solved itera-
tively yielding the temperature dependences of the magnetizations mA, mB, m′A,
and m′B – see Fig. 8.4.
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Figure 8.4: Temperature dependences of reduced magnetizations of A and B
sites obtained from the mean field calculations (see text).

Comparison of the calculation results with the experimental data is provided
in Figs. 8.5 and 8.6. Apparently, the mean field model output is closer to the
experiment for the B site defect - Fe(A) satellite resonance combination. Taking
into account that the mean field model performs better for higher number of
neighbours and considering that the JAB superexchange constant has the largest
absolute value, the better result on the A site magnetism is expected as there
are 12 nearest B neighbours of the A site, whereas there are only 6 nearest A
neighbours of the B site.

Notable differences between the temperature dependences of reduced fre-
quency splitting of satellite signals caused by different substitutions entering the
same site are distinct from the behaviour of common substituted magnetic iron
oxides like substituted yttrium iron garnet (YIG) [126], where the reduced split-
ting is determined mainly by the crystallographic site of the substitution. The
mean field model treats the presence of the defects as a breaking of particular
exchange couplings, but it does not take into account changes in electronic struc-
ture caused by the valence of the defect and a local lattice distortion depending
on the ion radius of the defect. Analysis of the results thus indicates that these
changes play considerably more significant role in substituted magnetite than in
other substituted magnetic iron oxides.
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substitution in comparison with the result of mean field calculations.
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8.4 Temperature Dependence of Linewidth of

Main NMR Signals

In general, resonance lines in solids exhibit inhomogeneous broadening. In the
case of magnetic iron oxides, the main factors influencing 57Fe NMR linewidths
comprise a distribution of demagnetizing fields and a hyperfine field distribution
related to the real sample structure (i. e. defects, substitutions or impurities
in the crystal). Experiments focused on a temperature evolution of resonance
lines usually reveal (beside changes of resonance frequencies or relaxation rates)
line broadening with increasing temperature (see e. g. Ref. [127]). The observed
broadening is a consequence of (slightly) different temperature dependences of
particular resonance signal contributions, which correspond to different hyperfine
fields in their aforementioned distribution.

Contrary to common magnetic iron oxide compounds exhibiting the 57Fe NMR
line broadening with increasing temperature, an anomalous opposite behaviour
is observed in magnetite – above the spin reorientation transition, the linewidths
of resonance signals decrease with rising temperature, arriving at minimal value
in the range from 250 K to 350 K (depending on sample composition). This
effect can be observed both in pure magnetite as well as in samples with cationic
substitutions or vacancies. The data for the A lines (reproduced in Fig. 8.7) were
accompanied in Ref. [118] by a brief, rather general analysis. The B line widths
are presented here in Fig. 8.8 (below Tsr, the width of the B2 line is taken).

Apparently, the spin reorientation transition causes a line broadening at least
within a narrow temperature region around this transition – see the pure mag-
netite data in Figs. 8.7 and 8.8. This is caused by magnetic moment fluctuation
occurring at temperatures close to Tsr. In order to check that the spin reorienta-
tion transition is not responsible for the line broadening in a wider temperature
interval (up to room temperature), the following experiment was performed: A
cylinder-shaped (diameter ≈ 4.5 mm, height ≈ 5.5 mm; cylinder axis in [110]
cubic direction) single crystal [Fe]A[Fe1.97Al0.03]BO4 sample (TV = 97.3 K, Tsr =
126.5 K) was placed in ≈ 0.2 T external magnetic field along [111] cubic direction
and the temperature dependence of the A line width and frequency was acquired.
The same parameters were measured also without the external magnetic field.
The results are shown in Fig. 8.9. The presence of the external field suppressed
the spin reorientation transition by keeping magnetization in [111] direction even
below Tsr

1, but it also resulted in additional line broadening dominantly due
to induced inhomogeneous demagnetizing field, which is an expected side effect.
Considering the A line spectrum as a convolution of two profiles (resonance line
broadened due to the studied microscopic behaviour and inhomogeneous broaden-
ing profile) and assuming the impact of the spin-reorientation transition negligible
at room temperature, the field-induced broadening can be compensated for using
the following equation:

wf,comp (T ) =
√
w2

f (T )− (w2
f (305K)− w2

0 (305K)) (8.7)

1This was checked on a similar sample [Fe]A[Fe1.995Al0.005]BO4 (TV = 119.7 K, Tsr = 128.3
K) with lower substitution concentration (and thus lower linewidths) which allowed to observe
split B lines (B1, B2) in a spectrum at 125 K even in a slightly lower field.
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Figure 8.7: Temperature dependences of HWHM of the A lines in the spectra of
pure and substituted magnetite (pure magnetite [70], [72], aluminium substituted
magnetite [70]) after Ref. [118]. The lines are guides for the eye only.
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where wf is the HWHM measured in field, w0 stands for the HWHM measured
without the field and wf,comp represents the HWHM measured in the field cor-
rected for the demagnetizing field broadening. The wf,comp (T ) dependence is
included in Fig. 8.9. Obviously, the compensated temperature dependence of
HWHM measured in the field (i. e. with suppressed spin reorientation transition)
does not significantly differ from the zero-field dependence. Thus the spin re-
orientation transition affects only the narrow temperature interval and is not a
cause of the overall anomalous temperature evolution of linewidths above TV.

Therefore, the linewidth narrowing with increasing temperature shall be in-
terpreted in the context of other electronic structure properties varying in the
whole investigated temperature range. To this end, electron transport (electrical
conductivity) seems to be the most relevant property. The DC electrical con-
ductivity above the Verwey transition increases with rising temperature, achieves
a maximum about or above room temperature and then slightly decreases as
illustrated in Fig. 8.10. In a limited range, experimental data of temperature
evolution of conductivity are usually fitted by an exponential

σ (T ) = σ0 exp

(
−Ea

kT

)
(8.8)

(Ea is an activation energy or energy gap, σ0 is a constant parameter, k is the
Boltzmann constant) (see e. g. Refs.[128], [129]), which is related to either Ar-
rhenius law, Mott relation, energy gap or to a simplification of a formula from
the following model.

The electron hopping model formulated by J. M. Honig [130] can describe how
the charge carriers (represented in magnetite by minority-spin valence electrons
(and corresponding holes) at the B sites) migrate between Fe2+(B) and Fe3+(B)
sites in magnetite and yields the following relation for DC conductivity σ

σ (T ) =
c0s (1− s) e2δ2

τakT
exp

(
−∆G

kT

)
(8.9)

where ∆G is an activation energy of charge hopping, e represents elementary
charge, τ is a time factor, δ2 is a dimensionless parameter, a is a lattice parameter,
s is a probability that a given site is occupied by the charge carrier, c0 is a
density of sites for charge carriers. This model can be applied also for substituted
magnetite – see e. g. Ref. [128]. More elaborate applicable models describe charge
carriers as polarons (i. e. electron-phonon coupling is taken into account) – for
instance a complex small polaron (i. e. localized charge carriers) model developed
by Ihle and Lorenz [131], [24] describes the electrical conductivity of magnetite
as a combination of small polaron band and hopping conductivity and achieves
a reasonable agreement with experimental DC and optical conductivity data [25]
(see Fig. 8.10).

A more general work [132] of Ciuchi and Fratini concerning charge ordering
transitions employs the following relation for DC polaronic conductivity above
the charge ordering transition:

σnorm
dc (T ) =

σ0

32
√

2πEpT 3/2
exp

(
− Ep

2kT

)
(8.10)
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Figure 8.9: Temperature dependence of HWHM (upper plot) and frequency
(middle plot) of the A line of [Fe]A[Fe1.97Al0.03]BO4 sample above the Verwey
transition measured with and without ≈ 0.2 T external magnetic field in [111]
cubic direction. The frequency difference of the A line frequency in the field and
in a zero field is plotted at the bottom – the slight dip and scatter around Tsr

is related to anisotropy constants crossing zero in that temperature region. The
lines are guides for the eye only.
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(Ep is a polaron energy). A decrease of electron-phonon coupling strength with
increasing temperature was observed in magnetite above the Verwey transition
by M. Kimura et al. [44] – a gradual change from a small polaron to a large
polaron (i. e. delocalized charge carriers) was found in the range from 250 K to
330 K.

Experimental data in Fig. 8.10 were fitted in the range from TV to 300 K by
relations (8.8), (8.9) and (8.10) (yielding Ea = 255± 5 K, ∆G = 460± 2 K and
Ep/2 = 563.5 ± 0.9 K) and compared with the results of Ihle and Lorenz [131],
[24] – apparently, these relations reasonably match the data in the given limited
temperature range while keeping the number of fit parameters low.
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Figure 8.10: Temperature dependence of DC electrical conductivity of mag-
netite above the Verwey transition. The experimental data [25] are compared to
the small polaron model [131], [24], as well as to relations (8.8), (8.9) and (8.10)
(in a limited range).

The details of the link between electrical conductivity and 57Fe NMR signal
linewidth shall be explained considering the B sublattice as a 1:1 mixture of Fe2+

and Fe3+ ions. The site distribution of these ions is changing all the time as the
minority-spin valence electrons hop between the B sites. Instantaneous hyperfine
field at each 57Fe nucleus is determined by the momentary electron configuration
in its vicinity. Resonance frequency of such a nucleus is then given by an average
of the hyperfine field over a characteristic time of the NMR experiment. Thus
the faster the electron hopping is, the closer to spectral line centre the average
is and the narrower line the whole ensemble of resonating nuclei produces in a
spectrum.

The situation in substituted magnetite is more complex. For a particular

86



substitution, the spectra of such samples exhibit main lines broadening with in-
creasing substitution concentration and satellite signals becoming more intense
for higher concentration of the substitution. However, no dependence of satellite
line frequencies on substitution concentration was observed. The electronic struc-
ture is significantly perturbed in the close vicinity of a substitution defect while
a screening effect can be expected in broader surroundings. The hyperfine field is
dominantly determined by the local electron configuration. Thus the resonating
nuclei in the first neighbourhood of the defect have their resonating frequency
substantially shifted, giving rise to satellite signals, whereas the resonance fre-
quencies of 57Fe in the second neighbourhood of the defect are much closer to the
main line frequency so these signals often merge with the main line. Unless there
are two or more defects in close proximity of resonating nuclei (which happens
rarely, provided the substitution concentration is not too high), there is no reason
for a dependence of satellite line frequencies on substitution concentration. The
screening in broader surroundings manifests itself at a particular Fe(B) site as an
increase of occupation probability for either Fe2+ or Fe3+ state and a simultane-
ous decrease for the other one. Compared to pure magnetite, the hyperfine field
at iron nuclei in this region is thus affected by different preferred configurations
of Fe2+ and Fe3+ ions and also by a slightly affected dynamics of electron hop-
ping. However, similarly to the situation in pure magnetite, increased hopping
rate implies a more uniform charge carrier distribution within the averaging time
and the resonance frequencies of 57Fe nuclei in such surroundings closer to the
spectral line centre frequency.

Based on these considerations, the NMR linewidths above the Verwey transi-
tion can be expected to be inversely proportional to the DC electrical conductiv-
ity. The low number of parameters in relations (8.8), (8.9) and (8.10) makes them
a suitable base for fitting the experimental temperature dependences of NMR line
HWHM in the following forms:

w (T ) = C{A,B}1 exp

(
E{A,B}1

kT

)
(8.11)

w (T ) = C{A,B}2T exp

(
E{A,B}2

kT

)
(8.12)

w (T ) = C{A,B}3T
3
2 exp

(
E{A,B}3

kT

)
(8.13)

Each of these relations contains only two fitted parameters C{A,B}{1,2,3} and E{A,B}{1,2,3}.
The fits of dependence (8.12) in the range between Tsr and 310 K are presented
in Figs. 8.11 and 8.12, while the other – similarly looking – fits (also between
Tsr and 310 K) can be found in Figs. A.12, A.13, A.14 and A.15 in Appendix.
The resulting fitted parameters C{A,B}2 and E{A,B}2 are listed in Table 8.1. The
values of C{A,B}{1,3} and E{A,B}{1,3} in Tables B.8 and B.9 numerically differ, yet
they provide qualitatively the same picture, thus they were placed in Appendix
and the following discussion focuses on the parameters of relation (8.12). Visu-
alization of the parameters with respect to the nominal Fe(B) valence vB, which
differs from 2.5+ due to the substitution, is shown in Fig. 8.13 and in Figs. A.16
and A.17 in Appendix.
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The plots in Fig. 8.13 show that the EA2 and EB2 values of defect-containing
samples are scattered around constant values of ≈ 450 K and ≈ 600 K, respec-
tively, while the values for stoichiometric magnetite are noticeably lower. The
value of EB2 = 447 ± 31 K for pure magnetite is in agreement with the value
of ∆G = 460 ± 2 K obtained by a fit of temperature dependence of the DC
conductivity in Fig. 8.10 (similarly, EB1 ≈ Ea and EB3 ≈ Ep/2), which confirms
the connection of the electrical conductivity with the NMR linewidths. Higher
values for substituted samples compared to pure magnetite can be understood as
a consequence of a perturbation potential introduced by the defects, while the
lack of any apparent systematic dependence on nominal Fe(B) valence can be
ascribed to the screening effect and a relatively narrow range of vB. The C{A,B}2
vs. vB plots display datapoints corresponding to vB close to 2.5+ placed within
a limited range up to 10 Hz · K−1 and 40 Hz · K−1 for CA2 and CB2, respectively,
whereas slightly higher deviations of vB from 2.5+ result in considerably larger
values of the C{A,B}2 parameters. A tempting interpretation would be based on
the s (1− s) factor in equation (8.9) equal to (vB − 2) (3− vB), which affects elec-
trical conductivity as experimentally evidenced by Tannhauser in Ref. [133] in a
wider context including other magnetite-related iron oxide phases. However, a
variation of the s (1− s) factor for the studied set of samples is negligible, which
explains limited C{A,B}2 values for vB not far from 2.5+. Therefore, the reason
for the notably elevated C{A,B}2 parameters in the case of samples with higher
substitution concentration must be different – most likely, it is caused by the
overlapping of the crystal areas affected by individual defects, which starts at
some critical concentration. Based on the composition of the studied samples,
the critical defect concentration can be roughly estimated at about 0.5% of iron
ions replaced by the charged defects. The ratios EB2/EA2 varying around ≈ 1.25
together with ratios CB2/CA2 oscillating around ≈ 4 (for substituted samples)
indicate a fundamental difference between the A and B sites: the electron shell
of resonating nuclei at the B sites is alternating between the Fe2+ and Fe3+ state,
resulting in much broader NMR lines, whereas the electron shell of resonating
nuclei at the A sites is polarized by the changes in the B sublattice but does not
undergo such dynamic changes of valence.

Table 8.1: Parameters of temperature dependences of NMR line width (8.12)
obtained from experimental data by a fit. The uncertainties correspond to the
errors from the fit.

sample composition
nominal
Fe(B)

valence vB

CA2 (Hz · K−1) EA2 (K) CB2 (Hz · K−1) EB2 (K)

[Fe]A[Fe2]BO4 2.500 1.77 ± 0.14 366 ± 12 15.2 ± 2.9 447 ± 31
[Fe0.993Zn2+

0.007]A[Fe2]BO4 2.504 6.28 ± 0.55 451 ± 12 22.8 ± 5.0 604 ± 31
[Fe0.983Zn2+

0.017]A[Fe2]BO4 2.509 8.72 ± 0.82 500 ± 14 37.6 ± 5.3 633 ± 20
[Fe]A[Fe1.994...

0
0.006]BO4 2.508 2.61 ± 0.20 536 ± 11 17.4 ± 7.8 646 ± 63

[Fe]A[Fe1.973...
0
0.027]BO4 2.534 14.3 ± 1.6 421 ± 16 69.8 ± 4.2 572 ± 11

[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 4.47 ± 0.19 472 ± 6 23.8 ± 2.1 561 ± 13
[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 4.82 ± 0.48 424 ± 15 15.5 ± 3.3 592 ± 34
[Fe]A[Fe1.98Ti4+0.02]BO4 2.485 23.1 ± 2.5 441 ± 15 73 ± 20 580 ± 36

[Fe]A[Fe1.995Al3+0.005]BO4 2.499 4.32 ± 0.43 434 ± 15 19.4 ± 2.5 539 ± 20

[Fe]A[Fe1.97Al3+0.03]BO4 2.492 27.0 ± 2.2 471 ± 12 85 ± 19 588 ± 35
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Figure 8.11: Temperature dependences of HWHM of the A lines in the spectra of
pure and substituted magnetite (pure magnetite [70], [72], aluminium substituted
magnetite [70], zinc and titanium substituted magnetite [118]) fitted in the range
between Tsr and 310 K with (8.12) expression.
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Figure 8.12: Temperature dependences of HWHM of the B lines in the spectra of
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Chapter 9

Conclusions

The experimental 57Fe NMR data and DFT calculation results were employed in
the analyses of the hyperfine interactions and electronic structure of magnetite.
This approach utilizing the relevant up-to-date information on magnetite turned
out to be successful in extending the knowledge about magnetite by quantitative
data as well as by interpretations of the observations.

Concerning the low-temperature phase of magnetite, the following was
achieved:

• The information on the electronic structure was extracted from the ab ini-
tio calculation results in a form of valence electron density maps showing
the charge distribution within trimerons, electron populations and valence
states of iron suitable for a comparison with the charge transfer description
from the trimeron model, the EFG tensors and the charge density at iron
nuclei.

• The hyperfine fields were calculated for various magnetization directions
and the resulting data sets were subsequently processed in order to extract
hyperfine parameters of all 24 iron sites consisting of isotropic part of the
hyperfine field and tensors of hyperfine field anisotropy.

• The quantitative reanalysis of experimental 57Fe NMR data published by
Mizoguchi [14] in 2001 yielded analogous hyperfine field parameters which
were correlated with the parameters from the DFT calculations. The cor-
relation revealed three mutually matching groups of the B sites in 8:5:3
ratio. The first group contains the Fe3+-like ions, while the other groups
are formed by the Fe2+-like ions. This grouping narrows down the set of
B sites a particular NMR signal comes from and corroborates the validity
of the DFT calculations and the crystal structure as the sets of the B site
parameters from the ab initio calculations exhibit the same grouping ratio
as the sets from the experimental data.

• The results of the DFT calculations support trimeron model as the charge
distribution and its impact on hyperfine parameters meets the expectations
based on the model: the Fe3+-like B site ions (end ions of trimerons or ions
not in the trimeron network) exhibit more symmetrical charge distribution
and higher electron spin magnetic moment compared to the Fe2+-like ions
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(central ions of trimerons), thus the Fe3+-like ions feature higher isotropic
part of the hyperfine field, lower hyperfine field anisotropy, lower EFG and
lower isomer shift in comparison with the Fe2+-like ions. Although several
discrepancies between the presented results and the model of Patterson
[39] were found, the trimeron model and the Patterson’s concept can be
understood as alternative interpretations of the same physical reality: Pat-
terson’s model comprising the broken branched zig-zag chain and pairs of
Fe(B) ions with one electron bonds corresponds to the trimeron network
with longer bonds omitted. Both models are derived from the nearest-
neighbour Fe(B)-Fe(B) distance distribution, but the strict limit on the
length of the Fe(B)-Fe(B) bond to qualify for a charge transfer imposed in
the model of Patterson does not seem adequate since the distribution of
the bond lengths is not broad, thus the t2g orbitals of neighbouring Fe(B)
ions significantly overlap even if the distance between these ions is not so
small. The trimeron concept therefore describes the electronic structure of
magnetite more precisely, which was demonstrated by the results presented
in this work.

• The calculated EFG tensors and the charge density at iron nuclei together
with calculated hyperfine fields allowed for a simulation of the Mössbauer
spectra, which were compared with the experimental spectrum and allowed
for a better understanding of the experimental Mössbauer spectroscopy
data.

• The information about ion valence of the three groups of the B sites turned
out to be the key for understanding the changes in the 57Fe NMR spectra
induced by a presence of substitution defects in magnetite. The tendency
of Fe(B) ion valence to increase or decrease depending on a particular type
of defects results in shifts of corresponding resonance signals due to the
implied changes of hyperfine fields, which was successfully explained us-
ing experimental spectra of magnetite with several types of the defects in
various concentrations. The analysis also revealed the characteristic size
of crystal volume impacted by a single defect being comparable with the
elementary cell size.

The 57Fe NMR data on substituted magnetite presented an important infor-
mation source also for the investigation of the high-temperature phase of
magnetite:

• The analysis of the temperature dependence of satellite NMR signal fre-
quencies based on a comparison with the mean field model modified for
a description of structures containing non-magnetic defects revealed that
substituted magnetite is considerably more sensitive to the changes in elec-
tronic structure induced by the valence of the defect and the local lattice
distortion determined by the ion radius of the defect than other substituted
magnetic iron oxides.

• The anomalous temperature dependences of the widths of the main lines in
the 57Fe NMR spectra above the Verwey transition were studied for mag-
netite with various types of defects as well as for pure magnetite. The spin
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reorientation transition was experimentally found to affect only a narrow
temperature interval, while the origin of the overall anomalous temperature
evolution of linewidths is different. The anomaly was then interpreted in
relation to the electrical conductivity mechanism and the dependences were
quantitatively evaluated for both the A and B lines in order to verify this
interpretation.

These results present contributions to the fundamental research of magnetite
which clarify several aspects of electronic structure and hyperfine interactions in
this compound and, at the same time, create a base for investigation of other
magnetite-related questions (e. g. on the dynamics of the Verwey transition or on
the anomalous temperature dependences of magnetocrystalline anisotropy con-
stants above the Verwey transition) beyond the scope of this thesis.
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Appendix A

Supplementary Figures

A.1 Electronic Structure and Hyperfine Inter-

actions in Magnetite Below the Verwey Tran-

sition

A.1.1 Electronic Structure
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Figure A.1: Maps of minority spin iron 3d valence electron density in trimeron
planes. Each map has 9 Å × 6 Å dimensions. Green lines denote trimerons [1].
Sites of iron ions participating in the trimeron located on a horizontal axis of
a particular map are indicated next to the map; the centre of the image plane
is placed in the location of the trimeron’s central ion. The monoclinic tilt of ~c
axis makes the standard crystallographic plane notation inconvenient for selected
planes, thus orientation of the planes is specified by normal vector of the plane
(which points out of the page) shown at the

⊙
symbol in combination with an

in-plane vector indicated by an arrow (indices of these vectors are taken with
respect to Cc coordinates). In each row, the plane of the first map forms with
the planes of the other two maps an angle of ≈ 55◦, whereas the angle between
the planes of the last two maps is ≈ 70.5◦. Site numbering follows the convention
introduced in part 7.1; primes indicate the ac-glide symmetry generated sites.
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Figure A.2: Populations of minority spin 3d electrons of the B site iron ions
from the DFT calculations visualized as an angular variation of the electron
density, i.e. the distance of the surface from a given site denotes the density
at the corresponding angle scaled by 3 Å · e−1 coefficient. Green lines highlight
trimerons [1]. Site numbering and label colours follow the convention introduced
in part 7.1; primes indicate the ac-glide symmetry generated sites. (Surface colour
indicating z-coordinate is intended just to improve clarity.)
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Figure A.3: Populations of minority spin t2g electrons of the B site iron ions
derived from Ref. [1] visualized as an angular variation of the electron density,
i.e. the distance of the surface from a given site denotes the density at the
corresponding angle scaled by 3 Å · e−1 coefficient. Green lines highlight trimerons
[1]. Site numbering and label colours follow the convention introduced in part 7.1;
primes indicate the ac-glide symmetry generated sites. (Surface colour indicating
z-coordinate is intended just to improve clarity.)
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Figure A.4: EFG tensors at iron A sites obtained from the DFT calculations
visualized in the elementary cell (scaling coefficient C = 0.5 Å · 10−21 V−1 ·m2).
Site numbering follows the convention introduced in part 7.1; primes indicate
the ac-glide symmetry generated sites. (Surface colour indicating z-coordinate is
intended just to improve clarity.)
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A.1.2 Hyperfine Field Anisotropy

Figure A.5: Hyperfine field anisotropy tensors of iron A sites extracted from
the DFT calculations visualized in the elementary cell (scaling coefficient C =
1.25 Å ·MHz−1). Site numbering follows the convention introduced in part 7.1;
primes indicate the ac-glide symmetry generated sites. (Surface colour indicating
z-coordinate is intended just to improve clarity.)
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Figure A.6: Visualization of mean square deviation σ(i, j) calculated using
equation (7.11) for all combinations of the A site data extracted from the DFT
results and from the experiment. Brightness of each mark is proportional to
σ(i, j) magnitude (black for σ(i, j) = 0 MHz; white for σ(i, j) ≥ 5 MHz) – darker
field means better match. Site numbering follows the convention introduced in
part 7.1.
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Figure A.7: Visualization of mean square deviation σ′(i, j) calculated using
equation (7.13) for all combinations of the A site data extracted from the DFT
results and from the experiment. Brightness of each mark is proportional to
σ′(i, j) magnitude (black for σ′(i, j) = 0 MHz; white for σ′(i, j) ≥ 0.7 MHz) –
darker field means better match. Site numbering follows the convention intro-
duced in part 7.1.
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A.1.3 Mössbauer Spectra Simulation
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Figure A.8: Simulated zero-field 57Fe Mössbauer spectrum of a single-domain
single crystal of (Cc phase) magnetite oriented in [201] direction towards the γ-ray
in comparison with experimental data [94]. Contributions of individual iron sites
are included; Fe(B) contributions are plotted in the same order as in Fig. 7.12.
The three groups of Fe(B) components correspond to the three groups of Fe(B)
ions in Fig. 7.12.

104



-12 -10 -8 -6 -4 -2  0  2  4  6  8  10  12

in
te

n
si

ty

velocity v (mm · s
-1

)

_A1

_A2

_A3

_A4

_A5

_A6

_A7

_A8

_B12

_B15

_B8

_B5

_B10

_B11

_B6

_B9

_B4

_B14

_B3

_B1

_B2

_B7

_B16

_B13

experiment

simulation

simulation - 8 Fe
3+

(A)

simulation - 8 Fe
3+

-like(B)

simulation - 5 Fe
2+

-like(B)

simulation - 3 Fe
2+

-like(B)

Figure A.9: Simulated zero-field 57Fe Mössbauer spectrum of a powder sample of
(Cc phase) magnetite in comparison with experimental data [94]. Contributions
of individual iron sites are included; Fe(B) contributions are plotted in the same
order as in Fig. 7.12. The three groups of Fe(B) components correspond to the
three groups of Fe(B) ions in Fig. 7.12.
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Figure A.10: Simulated zero-field 57Fe Mössbauer spectrum of a single-domain
single crystal of (Cc phase) magnetite oriented in [201] direction towards the
γ-ray in comparison with experimental data [94]. This simulation is based on
renormalized hyperfine fields (see text). Contributions of individual iron sites are
included; Fe(B) contributions are plotted in the same order as in Fig. 7.12. The
three groups of Fe(B) components correspond to the three groups of Fe(B) ions
in Fig. 7.12.
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Figure A.11: Simulated zero-field 57Fe Mössbauer spectrum of a powder sam-
ple of (Cc phase) magnetite in comparison with experimental data [94]. This
simulation is based on renormalized hyperfine fields (see text). Contributions of
individual iron sites are included; Fe(B) contributions are plotted in the same
order as in Fig. 7.12. The three groups of Fe(B) components correspond to the
three groups of Fe(B) ions in Fig. 7.12.
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A.2 Electronic Structure and Hyperfine Inter-

actions in Magnetite Above the Verwey Tran-

sition

A.2.1 Temperature Dependence of Linewidth of Main NMR
Signals
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Figure A.12: Temperature dependences of HWHM of the A lines in the spectra
of pure and substituted magnetite (pure magnetite [70], [72], aluminium substi-
tuted magnetite [70], zinc and titanium substituted magnetite [118]) fitted in the
range between Tsr and 310 K with (8.11) expression.
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Figure A.13: Temperature dependences of HWHM of the B lines in the spectra
of pure and substituted magnetite (pure magnetite [70], [72], aluminium sub-
stituted magnetite [70]) fitted in the range between Tsr and 310 K with (8.11)
expression.
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Figure A.14: Temperature dependences of HWHM of the A lines in the spectra
of pure and substituted magnetite (pure magnetite [70], [72], aluminium substi-
tuted magnetite [70], zinc and titanium substituted magnetite [118]) fitted in the
range between Tsr and 310 K with (8.13) expression.
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Figure A.15: Temperature dependences of HWHM of the B lines in the spectra
of pure and substituted magnetite (pure magnetite [70], [72], aluminium sub-
stituted magnetite [70]) fitted in the range between Tsr and 310 K with (8.13)
expression.
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Figure A.16: Visualization of the parameters of temperature dependences of
NMR line width (8.11) with respect to the nominal Fe(B) valence vB. Substitution
types are distinguished by different symbols.
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Figure A.17: Visualization of the parameters of temperature dependences of
NMR line width (8.13) with respect to the nominal Fe(B) valence vB. Substitution
types are distinguished by different symbols.
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Supplementary Tables

B.1 Electronic Structure and Hyperfine Inter-

actions in Magnetite Below the Verwey Tran-

sition

B.1.1 Electronic Structure
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Table B.5: Values of mean square deviation σ(i, j) (in MHz; in bold font for
σ(i, j) < 5 MHz) calculated using equation (7.11) for all combinations of the A
site data extracted from the DFT results and from the experiment. Lower value
means better match. Site numbering follows the convention introduced in part
7.1.

site A1 A2 A3 A4 A5 A6 A7 A8

A1 4.06 4.47 4.47 4.60 4.68 4.93 5.55 5.44
A2 4.18 4.59 4.62 4.70 4.86 5.07 5.69 5.62
A3 5.27 5.67 5.72 5.77 5.97 6.16 6.79 6.74
A4 5.52 5.92 5.97 6.02 6.22 6.40 7.03 6.98
A5 3.47 3.87 3.96 3.92 4.23 4.38 4.98 4.97
A6 4.19 4.57 4.62 4.67 4.89 5.06 5.72 5.67
A7 3.98 4.35 4.44 4.41 4.73 4.85 5.48 5.49
A8 4.51 4.90 4.98 4.96 5.26 5.41 6.03 6.02
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Table B.7: Values of mean square deviation σ′(i, j) (in MHz; in bold font for
σ′(i, j) < 0.7 MHz) calculated using equation (7.13) for all combinations of the A
site data extracted from the DFT results and from the experiment. Lower value
means better match. Site numbering follows the convention introduced in part
7.1.

site A1 A2 A3 A4 A5 A6 A7 A8

A1 1.21 0.87 0.77 0.91 0.47 0.52 0.59 0.38
A2 0.97 0.63 0.58 0.65 0.33 0.38 0.66 0.58
A3 0.22 0.60 0.66 0.74 0.90 1.09 1.70 1.65
A4 0.44 0.81 0.87 0.94 1.11 1.29 1.90 1.86
A5 1.65 1.26 1.27 1.16 1.07 0.86 0.30 0.54
A6 0.92 0.51 0.50 0.48 0.38 0.22 0.70 0.70
A7 1.26 0.85 0.90 0.74 0.79 0.51 0.54 0.71
A8 0.67 0.31 0.46 0.20 0.54 0.49 0.98 1.02
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B.2 Electronic Structure and Hyperfine Inter-

actions in Magnetite Above the Verwey Tran-

sition

B.2.1 Temperature Dependence of Linewidth of Main NMR
Signals

Table B.8: Parameters of temperature dependences of NMR line width (8.11)
obtained from experimental data by a fit. The uncertainties correspond to the
errors from the fit.

sample composition

nominal
Fe(B)

valence
vB

CA1 (kHz) EA1 (K) CB1 (kHz) EB1 (K)

[Fe]A[Fe2]BO4 2.500 0.87 ± 0.09 190 ± 16 7.9 ± 1.8 258 ± 38
[Fe0.993Zn2+

0.007]A[Fe2]BO4 2.504 2.95 ± 0.14 284 ± 6 10.3 ± 2.9 442 ± 39
[Fe0.983Zn2+

0.017]A[Fe2]BO4 2.509 4.25 ± 0.23 327 ± 8 17.5 ± 3.1 467 ± 24
[Fe]A[Fe1.994...

0
0.006]BO4 2.508 1.22 ± 0.06 368 ± 7 8.0 ± 4.0 480 ± 72

[Fe]A[Fe1.973...
0
0.027]BO4 2.534 7.05 ± 0.64 246 ± 14 40.1 ± 2.7 367 ± 12

[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 2.18 ± 0.17 299 ± 11 12.0 ± 0.9 382 ± 11
[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 2.34 ± 0.36 251 ± 23 7.8 ± 2.2 409 ± 44
[Fe]A[Fe1.98Ti4+0.02]BO4 2.485 11.25 ± 0.48 270 ± 6 35.7 ± 7.4 409 ± 27

[Fe]A[Fe1.995Al3+0.005]BO4 2.499 2.14 ± 0.29 258 ± 20 9.9 ± 1.5 355 ± 24

[Fe]A[Fe1.97Al3+0.03]BO4 2.492 13.78 ± 0.74 290 ± 8 42.0 ± 9.8 410 ± 36

Table B.9: Parameters of temperature dependences of NMR line width (8.13)
obtained from experimental data by a fit. The uncertainties correspond to the
errors from the fit.

sample composition

nominal
Fe(B)

valence
vB

CA3 (Hz · K−3/2) EA3 (K) CB3 (Hz · K−3/2) EB3 (K)

[Fe]A[Fe2]BO4 2.500 0.079 ± 0.006 454 ± 11 0.66 ± 0.11 541 ± 28
[Fe0.993Zn2+

0.007]A[Fe2]BO4 2.504 0.288 ± 0.032 535 ± 15 1.07 ± 0.20 686 ± 27
[Fe0.983Zn2+

0.017]A[Fe2]BO4 2.509 0.393 ± 0.046 588 ± 17 1.73 ± 0.22 717 ± 18
[Fe]A[Fe1.994...

0
0.006]BO4 2.508 0.120 ± 0.012 621 ± 14 0.81 ± 0.34 729 ± 59

[Fe]A[Fe1.973...
0
0.027]BO4 2.534 0.645 ± 0.082 509 ± 19 2.91 ± 0.21 675 ± 13

[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 0.201 ± 0.008 560 ± 6 1.06 ± 0.11 651 ± 16
[Fe]A[Fe1.992Ti4+0.008]BO4 2.494 0.217 ± 0.019 511 ± 13 0.68 ± 0.13 684 ± 30
[Fe]A[Fe1.98Ti4+0.02]BO4 2.485 1.04 ± 0.15 527 ± 19 3.3 ± 1.0 666 ± 41

[Fe]A[Fe1.995Al3+0.005]BO4 2.499 0.193 ± 0.016 523 ± 12 0.85 ± 0.10 631 ± 19

[Fe]A[Fe1.97Al3+0.03]BO4 2.492 1.19 ± 0.11 562 ± 15 3.82 ± 0.87 677 ± 35
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[72] Novák P., Štěpánková H., Englich J., Kohout J. and Brabers V. A. M.
Temperature Dependence of NMR in Magnetite. In: Ferrites: Proc. ICF 8,
Kyoto and Tokyo. Kyoto and Tokyo: Japan Society of Powder and Powder
Metallurgy, 2000, p. 131.
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[75] Mössbauer R. L. Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z.
Physik. 1958, 151, 124-143.

[76] Shvyd’ko Y. et al. γ-Ray Wavelength Standard for Atomic Scales. Phys.
Rev. Lett. 2000, 85, 495-498.

[77] Phillips W. R., Ahmad I., Banes D. W., Glagola B. G., Henning W.,
Kutschera W., Rehm K. E., Schiffer J. P. and Wang T. F. Charge-state
dependence of nuclear lifetimes. Phys. Rev. Lett. 1989, 62, 1025.

[78] Sahm W. and Schwenk A. Precision Measurements of Magnetic Moments
of Nuclei with Weak NMR Signals. Z. Naturforsch. 1974, 29a, 1763.

[79] Perlow G. J., Johnson C. E. and Marshall W. Mössbauer Effect of Fe37 in
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Nazarewicz W. and Söhnelm T. Nuclear Quadrupole Moment of 57Fe from
Microscopic Nuclear and Atomic Calculations. Phys. Rev. Lett. 2001, 87,
062701.

[81] Hohenberg P. and Kohn W.. Inhomogeneous Electron Gas. Phys. Rev. 1964,
136, B864-B871.

[82] Anisimov V. I., Solovyev I. V., Korotin M. A., Czyżyk M. T. and Sawatzky
G. A. Density-functional theory and NiO photoemission spectra. Phys. Rev.
B. 1993, 48, 16929-16934.

[83] Hubbard J. Generalized Wigner lattices in one dimension and some appli-
cations to tetracyanoquinodimethane (TCNQ) salts. Phys. Rev. B. 1978,
17, 494-505.

[84] Kohn W. and Sham L. J. Self-Consistent Equations Including Exchange
and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.

[85] Singh D. J. Planewaves, Pseudopotentials and the LAPW Method. Boston:
Kluwer Academic, 1994.

[86] Sjøstedt E., Nordström L., and Singh D. J. An alternative way of linearizing
the augmented plane-wave method. Solid State Commun. 2000, 114, 15.

130
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[93] Řezńıček R., Chlan V., Štěpánková H. and Novák P. Hyperfine field and
electronic structure of magnetite below the Verwey transition. Phys. Rev.
B. 2015, 91, 125134.
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Brabers V. A. M. Nuclear magnetic resonance of 57Fe in Al-, Ga- and Ti-
substituted magnetite above Verwey temperature, J. Magn. Magn. Mater.
2007, 310, 2555–2557.
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3. Chlan V., Kouřil K., Štěpánková H., Řezńıček R. and Englich J. Study
of Y-type Hexaferrite by Means of 57Fe NMR and Electronic Structure
Calculations. Acta Physica Polonica A. 2014, 126, 42-43.
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